BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 101523)

  • 1. In vivo regulation of glycolysis and characterization of sugar: phosphotransferase systems in Streptococcus lactis.
    Thompson J
    J Bacteriol; 1978 Nov; 136(2):465-76. PubMed ID: 101523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoenolpyruvate and 2-phosphoglycerate: endogenous energy source(s) for sugar accumulation by starved cells of Streptococcus lactis.
    Thompson J; Thomas TD
    J Bacteriol; 1977 May; 130(2):583-95. PubMed ID: 122509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of glycolysis and sugar phosphotransferase activities in Streptococcus lactis: growth in the presence of 2-deoxy-D-glucose.
    Thompson J; Chassy BM
    J Bacteriol; 1983 May; 154(2):819-30. PubMed ID: 6404888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel phosphoenolpyruvate-dependent futile cycle in Streptococcus lactis: 2-deoxy-D-glucose uncouples energy production from growth.
    Thompson J; Chassy BM
    J Bacteriol; 1982 Sep; 151(3):1454-65. PubMed ID: 6286601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactose metabolism in Streptococcus lactis: phosphorylation of galactose and glucose moieties in vivo.
    Thompson J
    J Bacteriol; 1979 Dec; 140(3):774-85. PubMed ID: 118155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of 31P nuclear magnetic resonance spectroscopy and 14C fluorography in studies of glycolysis and regulation of pyruvate kinase in Streptococcus lactis.
    Thompson J; Torchia DA
    J Bacteriol; 1984 Jun; 158(3):791-800. PubMed ID: 6427193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr.
    Ye JJ; Reizer J; Cui X; Saier MH
    J Biol Chem; 1994 Apr; 269(16):11837-44. PubMed ID: 8163482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of methyl-beta-d-thiogalactopyranoside-6-phosphate accumulation in Streptococcus lactis by exclusion and expulsion mechanisms.
    Thompson J; Saier MH
    J Bacteriol; 1981 Jun; 146(3):885-94. PubMed ID: 6787017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of 2-deoxyglucose phosphate accumulation in Lactococcus lactis vesicles by metabolite-activated, ATP-dependent phosphorylation of serine-46 in HPr of the phosphotransferase system.
    Ye JJ; Reizer J; Saier MH
    Microbiology (Reading); 1994 Dec; 140 ( Pt 12)():3421-9. PubMed ID: 7881559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake and metabolism of sucrose by Streptococcus lactis.
    Thompson J; Chassy BM
    J Bacteriol; 1981 Aug; 147(2):543-51. PubMed ID: 6267012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose transport in Streptococcus agalactiae and its inhibition by lactoperoxidase-thiocyanate-hydrogen peroxide.
    Mickelson MN
    J Bacteriol; 1977 Nov; 132(2):541-8. PubMed ID: 334746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of phosphoenolpyruvate in the catabolism of caries-conducive disaccharides by Streptococcus mutans: lactose transport.
    Calmes R
    Infect Immun; 1978 Mar; 19(3):934-42. PubMed ID: 246429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities.
    Thompson J; Chassy BM; Egan W
    J Bacteriol; 1985 Apr; 162(1):217-23. PubMed ID: 3920203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyruvate kinase of Streptococcus lactis.
    Collins LB; Thomas TD
    J Bacteriol; 1974 Oct; 120(1):52-8. PubMed ID: 4214503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The HPr(Ser) kinase of Streptococcus salivarius: a hexameric bifunctional enzyme controlled by glycolytic intermediates and inorganic phosphate.
    Frey N; Nessler S; Fieulaine S; Vaillancourt K; Frenette M; Vadeboncoeur C
    FEMS Microbiol Lett; 2003 Jul; 224(1):67-72. PubMed ID: 12855169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between depression of catabolite control of xylose metabolism and a defect in the phosphoenolpyruvate:mannose phosphotransferase system in Pediococcus halophilus.
    Abe K; Uchida K
    J Bacteriol; 1989 Apr; 171(4):1793-800. PubMed ID: 2703460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of inorganic phosphate in regulation of energy metabolism of Streptococcus lactis.
    Mason PW; Carbone DP; Cushman RA; Waggoner AS
    J Biol Chem; 1981 Feb; 256(4):1861-6. PubMed ID: 6780554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Galactose transport systems in Streptococcus lactis.
    Thompson J
    J Bacteriol; 1980 Nov; 144(2):683-91. PubMed ID: 6776094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio.
    Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M
    J Bacteriol; 1997 Sep; 179(17):5282-7. PubMed ID: 9286977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.