These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 101523)
1. In vivo regulation of glycolysis and characterization of sugar: phosphotransferase systems in Streptococcus lactis. Thompson J J Bacteriol; 1978 Nov; 136(2):465-76. PubMed ID: 101523 [TBL] [Abstract][Full Text] [Related]
2. Phosphoenolpyruvate and 2-phosphoglycerate: endogenous energy source(s) for sugar accumulation by starved cells of Streptococcus lactis. Thompson J; Thomas TD J Bacteriol; 1977 May; 130(2):583-95. PubMed ID: 122509 [TBL] [Abstract][Full Text] [Related]
3. Regulation of glycolysis and sugar phosphotransferase activities in Streptococcus lactis: growth in the presence of 2-deoxy-D-glucose. Thompson J; Chassy BM J Bacteriol; 1983 May; 154(2):819-30. PubMed ID: 6404888 [TBL] [Abstract][Full Text] [Related]
4. Novel phosphoenolpyruvate-dependent futile cycle in Streptococcus lactis: 2-deoxy-D-glucose uncouples energy production from growth. Thompson J; Chassy BM J Bacteriol; 1982 Sep; 151(3):1454-65. PubMed ID: 6286601 [TBL] [Abstract][Full Text] [Related]
5. Lactose metabolism in Streptococcus lactis: phosphorylation of galactose and glucose moieties in vivo. Thompson J J Bacteriol; 1979 Dec; 140(3):774-85. PubMed ID: 118155 [TBL] [Abstract][Full Text] [Related]
6. Use of 31P nuclear magnetic resonance spectroscopy and 14C fluorography in studies of glycolysis and regulation of pyruvate kinase in Streptococcus lactis. Thompson J; Torchia DA J Bacteriol; 1984 Jun; 158(3):791-800. PubMed ID: 6427193 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr. Ye JJ; Reizer J; Cui X; Saier MH J Biol Chem; 1994 Apr; 269(16):11837-44. PubMed ID: 8163482 [TBL] [Abstract][Full Text] [Related]
8. Regulation of methyl-beta-d-thiogalactopyranoside-6-phosphate accumulation in Streptococcus lactis by exclusion and expulsion mechanisms. Thompson J; Saier MH J Bacteriol; 1981 Jun; 146(3):885-94. PubMed ID: 6787017 [TBL] [Abstract][Full Text] [Related]
9. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. Matsuoka Y; Shimizu K J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830 [TBL] [Abstract][Full Text] [Related]
10. Regulation of 2-deoxyglucose phosphate accumulation in Lactococcus lactis vesicles by metabolite-activated, ATP-dependent phosphorylation of serine-46 in HPr of the phosphotransferase system. Ye JJ; Reizer J; Saier MH Microbiology (Reading); 1994 Dec; 140 ( Pt 12)():3421-9. PubMed ID: 7881559 [TBL] [Abstract][Full Text] [Related]
11. Uptake and metabolism of sucrose by Streptococcus lactis. Thompson J; Chassy BM J Bacteriol; 1981 Aug; 147(2):543-51. PubMed ID: 6267012 [TBL] [Abstract][Full Text] [Related]
12. Glucose transport in Streptococcus agalactiae and its inhibition by lactoperoxidase-thiocyanate-hydrogen peroxide. Mickelson MN J Bacteriol; 1977 Nov; 132(2):541-8. PubMed ID: 334746 [TBL] [Abstract][Full Text] [Related]
13. Involvement of phosphoenolpyruvate in the catabolism of caries-conducive disaccharides by Streptococcus mutans: lactose transport. Calmes R Infect Immun; 1978 Mar; 19(3):934-42. PubMed ID: 246429 [TBL] [Abstract][Full Text] [Related]
14. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities. Thompson J; Chassy BM; Egan W J Bacteriol; 1985 Apr; 162(1):217-23. PubMed ID: 3920203 [TBL] [Abstract][Full Text] [Related]
16. The HPr(Ser) kinase of Streptococcus salivarius: a hexameric bifunctional enzyme controlled by glycolytic intermediates and inorganic phosphate. Frey N; Nessler S; Fieulaine S; Vaillancourt K; Frenette M; Vadeboncoeur C FEMS Microbiol Lett; 2003 Jul; 224(1):67-72. PubMed ID: 12855169 [TBL] [Abstract][Full Text] [Related]
17. Correlation between depression of catabolite control of xylose metabolism and a defect in the phosphoenolpyruvate:mannose phosphotransferase system in Pediococcus halophilus. Abe K; Uchida K J Bacteriol; 1989 Apr; 171(4):1793-800. PubMed ID: 2703460 [TBL] [Abstract][Full Text] [Related]
18. The importance of inorganic phosphate in regulation of energy metabolism of Streptococcus lactis. Mason PW; Carbone DP; Cushman RA; Waggoner AS J Biol Chem; 1981 Feb; 256(4):1861-6. PubMed ID: 6780554 [TBL] [Abstract][Full Text] [Related]
19. Galactose transport systems in Streptococcus lactis. Thompson J J Bacteriol; 1980 Nov; 144(2):683-91. PubMed ID: 6776094 [TBL] [Abstract][Full Text] [Related]
20. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M J Bacteriol; 1997 Sep; 179(17):5282-7. PubMed ID: 9286977 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]