These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 101523)
21. Time dependent responses of glycolytic intermediates in a detailed glycolytic model of Lactococcus lactis during glucose run-out experiments. Hoefnagel MH; van der Burgt A; Martens DE; Hugenholtz J; Snoep JL Mol Biol Rep; 2002; 29(1-2):157-61. PubMed ID: 12241048 [TBL] [Abstract][Full Text] [Related]
22. Regulation of ATP-dependent P-(Ser)-HPr formation in Streptococcus mutans and Streptococcus salivarius. Thevenot T; Brochu D; Vadeboncoeur C; Hamilton IR J Bacteriol; 1995 May; 177(10):2751-9. PubMed ID: 7751285 [TBL] [Abstract][Full Text] [Related]
23. Bacterial phosphoenolpyruvate-dependent phosphotransferase system: P-Ser-HPr and its possible regulatory function? Deutscher J; Kessler U; Alpert CA; Hengstenberg W Biochemistry; 1984 Sep; 23(19):4455-60. PubMed ID: 21370586 [TBL] [Abstract][Full Text] [Related]
24. Regulation of product formation during glucose or lactose limitation in nongrowing cells of Streptococcus lactis. Fordyce AM; Crow VL; Thomas TD Appl Environ Microbiol; 1984 Aug; 48(2):332-7. PubMed ID: 6435521 [TBL] [Abstract][Full Text] [Related]
25. Distribution of proteins similar to IIIManH and IIIManL of the Streptococcus salivarius phosphoenolpyruvate:mannose-glucose phosphotransferase system among oral and nonoral bacteria. Pelletier M; Frenette M; Vadeboncoeur C J Bacteriol; 1995 May; 177(9):2270-5. PubMed ID: 7730253 [TBL] [Abstract][Full Text] [Related]
26. Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism. Crow VL; Davey GP; Pearce LE; Thomas TD J Bacteriol; 1983 Jan; 153(1):76-83. PubMed ID: 6294064 [TBL] [Abstract][Full Text] [Related]
27. Carbohydrate metabolism in lactic streptococci: fate of galactose supplied in free or disaccharide form. Lee R; Molskness T; Sandine WE; Elliker PR Appl Microbiol; 1973 Dec; 26(6):951-8. PubMed ID: 4203337 [TBL] [Abstract][Full Text] [Related]
28. Involvement of lactose enzyme II of the phosphotransferase system in rapid expulsion of free galactosides from Streptococcus pyogenes. Reizer J; Saier MH J Bacteriol; 1983 Oct; 156(1):236-42. PubMed ID: 6413489 [TBL] [Abstract][Full Text] [Related]
29. Phosphoenolpyruvate-dependent glucose phosphotransferase activity in Streptococcus mitis ATCC 903. Roberts KR; Linder L Scand J Dent Res; 1980 Aug; 88(4):316-22. PubMed ID: 6934615 [TBL] [Abstract][Full Text] [Related]
30. Intracellular phosphorylation of glucose analogs via the phosphoenolpyruvate: mannose-phosphotransferase system in Streptococcus lactis. Thompson J; Chassy BM J Bacteriol; 1985 Apr; 162(1):224-34. PubMed ID: 3920204 [TBL] [Abstract][Full Text] [Related]
31. Changes in glycolytic activity of Lactococcus lactis induced by low temperature. Wouters JA; Kamphuis HH; Hugenholtz J; Kuipers OP; de Vos WM; Abee T Appl Environ Microbiol; 2000 Sep; 66(9):3686-91. PubMed ID: 10966377 [TBL] [Abstract][Full Text] [Related]
32. The role of phosphoenolpyruvate in the simultaneous uptake of fructose and 2-deoxyglucose by Escherichia coli. Kornberg H; Lambourne LT Proc Natl Acad Sci U S A; 1994 Nov; 91(23):11080-3. PubMed ID: 7972013 [TBL] [Abstract][Full Text] [Related]
33. Stimulation of dihydroxyacetone and glycerol kinase activity in Streptococcus faecalis by phosphoenolpyruvate-dependent phosphorylation catalyzed by enzyme I and HPr of the phosphotransferase system. Deutscher J; Sauerwald H J Bacteriol; 1986 Jun; 166(3):829-36. PubMed ID: 3011747 [TBL] [Abstract][Full Text] [Related]
34. Distinct galactose phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus lactis. Park YH; McKay LL J Bacteriol; 1982 Feb; 149(2):420-5. PubMed ID: 6799488 [TBL] [Abstract][Full Text] [Related]
35. Regulation of sugar uptake via the phosphoenolpyruvate-dependent phosphotransferase systems in Bacillus subtilis and Lactococcus lactis is mediated by ATP-dependent phosphorylation of seryl residue 46 in HPr. Ye JJ; Saier MH J Bacteriol; 1996 Jun; 178(12):3557-63. PubMed ID: 8655554 [TBL] [Abstract][Full Text] [Related]
36. Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR. Neves AR; Ramos A; Shearman C; Gasson MJ; Almeida JS; Santos H Eur J Biochem; 2000 Jun; 267(12):3859-68. PubMed ID: 10849005 [TBL] [Abstract][Full Text] [Related]
37. Catabolite inhibition and sequential metabolism of sugars by Streptococcus lactis. Thompson J; Turner KW; Thomas TD J Bacteriol; 1978 Mar; 133(3):1163-74. PubMed ID: 417061 [TBL] [Abstract][Full Text] [Related]
38. Phosphoenolpyruvate-dependent phosphorylation of hexoses by ruminal bacteria: evidence for the phosphotransferase transport system. Martin SA; Russell JB Appl Environ Microbiol; 1986 Dec; 52(6):1348-52. PubMed ID: 3789722 [TBL] [Abstract][Full Text] [Related]
39. Glucose transport by a mutant of Streptococcus mutans unable to accumulate sugars via the phosphoenolpyruvate phosphotransferase system. Cvitkovitch DG; Boyd DA; Thevenot T; Hamilton IR J Bacteriol; 1995 May; 177(9):2251-8. PubMed ID: 7730250 [TBL] [Abstract][Full Text] [Related]
40. Glucose transport in Streptococcus salivarius. Evidence for the presence of a distinct phosphoenolpyruvate: glucose phosphotransferase system which catalyses the phosphorylation of alpha-methyl glucoside. Vadeboncoeur C; Trahan L Can J Microbiol; 1982 Feb; 28(2):190-9. PubMed ID: 7066764 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]