These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 1015425)

  • 21. [Gas exchange in the kidney under conditons of normo- and hypoxemia].
    Kalinina MK; Ivanov KP
    Fiziol Zh SSSR Im I M Sechenova; 1967 Aug; 53(8):980-6. PubMed ID: 5609174
    [No Abstract]   [Full Text] [Related]  

  • 22. Renal tissue NO and intrarenal haemodynamics during experimental variations of NO content in anaesthetised rats.
    Grzelec-Mojzesowicz M; Sadowski J
    J Physiol Pharmacol; 2007 Mar; 58(1):149-63. PubMed ID: 17440233
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accounting for oxygen in the renal cortex: a computational study of factors that predispose the cortex to hypoxia.
    Lee CJ; Gardiner BS; Ngo JP; Kar S; Evans RG; Smith DW
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F218-F236. PubMed ID: 28404592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo determination of renal tissue oxygenation during pulsatile and nonpulsatile left heart bypass.
    Mukherjee ND; Beran AV; Hirai J; Wakabayashi A; Sperling DR; Taylor WF; Connolly JE
    Ann Thorac Surg; 1973 Apr; 15(4):354-63. PubMed ID: 4690500
    [No Abstract]   [Full Text] [Related]  

  • 25. Evidence that renal arterial-venous oxygen shunting contributes to dynamic regulation of renal oxygenation.
    Leong CL; Anderson WP; O'Connor PM; Evans RG
    Am J Physiol Renal Physiol; 2007 Jun; 292(6):F1726-33. PubMed ID: 17327497
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduced hexokinase activity in renal medullary tissue from rabbits with inferior vena caval constriction.
    Brown JN; Smith TM
    Nephron; 1978; 20(6):343-5. PubMed ID: 662052
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of shifts in hemoglobin-oxygen affinity during hypoxia.
    Rand PW; Norton JM; Barker N; Lovell M
    Vox Sang; 1975; 29(6):401-10. PubMed ID: 1210225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Renal hemodynamics and oxygen consumption in experimental chronic hypoxia.
    Engelman RM; Liebow AA; Aperia AC
    J Surg Res; 1969 Jul; 9(7):423-31. PubMed ID: 5797856
    [No Abstract]   [Full Text] [Related]  

  • 29. Haemodynamic and metabolic changes induced by repeated episodes of hypoxia in pigs.
    Licker M; Schweizer A; Hohn L; Morel DR
    Acta Anaesthesiol Scand; 1998 Sep; 42(8):957-65. PubMed ID: 9773141
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Renal medullary tissue oxygenation is dependent on both cortical and medullary blood flow.
    O'Connor PM; Kett MM; Anderson WP; Evans RG
    Am J Physiol Renal Physiol; 2006 Mar; 290(3):F688-94. PubMed ID: 16219913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of Renal Blood Flow and Oxygenation in CKD Using Magnetic Resonance Imaging.
    Khatir DS; Pedersen M; Jespersen B; Buus NH
    Am J Kidney Dis; 2015 Sep; 66(3):402-11. PubMed ID: 25618188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intrarenal blood oxygenation and renal function measured by magnetic resonance imaging during long-term cyclosporine treatment.
    Kristensen DH; Pedersen M; Grøn MC; Flyvbjerg A; Madsen M; Frøkiaer J; Mortensen J
    Transplant Proc; 2005 Oct; 37(8):3302-4. PubMed ID: 16298580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Renal BOLD-MRI and assessment for renal hypoxia.
    Neugarten J
    Kidney Int; 2012 Apr; 81(7):613-4. PubMed ID: 22419042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kidney outer medulla mitochondria are more efficient compared with cortex mitochondria as a strategy to sustain ATP production in a suboptimal environment.
    Schiffer TA; Gustafsson H; Palm F
    Am J Physiol Renal Physiol; 2018 Sep; 315(3):F677-F681. PubMed ID: 29846107
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intrarenal distribution of blood flow during ureteral and venous pressure elevation.
    Abe Y; Kishimoto T; Yamamoto K; Ueda J
    Am J Physiol; 1973 Apr; 224(4):746-51. PubMed ID: 4698792
    [No Abstract]   [Full Text] [Related]  

  • 36. Contrast-enhanced ultrasound identifies reduced overall and regional renal perfusion during global hypoxia in piglets.
    Brabrand K; de Lange C; Emblem KE; Reinholt FP; Saugstad OD; Stokke ES; Munkeby BH
    Invest Radiol; 2014 Aug; 49(8):540-6. PubMed ID: 24637585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of elevated renal venous pressure on intrarenal haemodynamics.
    Kövér G; Hársing LG; Hársing L
    Acta Physiol Acad Sci Hung; 1974; 45(3-4):173-80. PubMed ID: 4471265
    [No Abstract]   [Full Text] [Related]  

  • 38. The regulation of blood perfusion in the renal cortex and medulla by reactive oxygen species and nitric oxide in the anaesthetised rat.
    Ahmeda AF; Johns EJ
    Acta Physiol (Oxf); 2012 Mar; 204(3):443-50. PubMed ID: 21827636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Blood flow distribution and tissue solute content of the isolated-perfused kidney.
    Gagnon JA; Grove DW; Flamenbaum W
    Pflugers Arch; 1974 Mar; 347(4):261-74. PubMed ID: 4859227
    [No Abstract]   [Full Text] [Related]  

  • 40. Radioimmunoassay of prostaglandin A. Intrarenal PGA2 as a factor mediating saline-induced natriuresis.
    Attallah AA; Lee JB
    Circ Res; 1973 Dec; 33(6):696-703. PubMed ID: 4762010
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.