These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 1015961)

  • 41. Oxidation of C1-compounds in Pseudomonas C.
    Ben-Bassat A; Goldberg I
    Biochim Biophys Acta; 1977 Apr; 497(2):586-97. PubMed ID: 192317
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A pH-controlled fed-batch process can overcome inhibition by formate in NADH-dependent enzymatic reductions using formate dehydrogenase-catalyzed coenzyme regeneration.
    Neuhauser W; Steininger M; Haltrich D; Kulbe KD; Nidetzky B
    Biotechnol Bioeng; 1998 Nov; 60(3):277-82. PubMed ID: 10099429
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Growth of Pseudomonas C on C1 compounds: enzyme activites in extracts of Pseudomonas C cells grown on methanol, formaldehyde, and formate as sole carbon sources.
    Goldberg I; Mateles RI
    J Bacteriol; 1975 Apr; 122(1):47-53. PubMed ID: 235511
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biosynthesis, isolation and properties of NAD-dependent formate dehydrogenase from the yeast Candida methylica.
    Avilova TV; Egorova OA; Ioanesyan LS; Egorov AM
    Eur J Biochem; 1985 Nov; 152(3):657-62. PubMed ID: 4054127
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Different types of formaldehyde-oxidizing dehydrogenases in Nocardia species 239: purification and characterization of an NAD-dependent aldehyde dehydrogenase.
    Van Ophem PW; Duine JA
    Arch Biochem Biophys; 1990 Nov; 282(2):248-53. PubMed ID: 2241149
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [The nature of methanol-induced acidification of the medium by products of metabolism of methylotrophic yeasts].
    Gonchar MV; Sibirnyĭ AA
    Ukr Biokhim Zh (1978); 1988; 60(1):97-100. PubMed ID: 3284121
    [TBL] [Abstract][Full Text] [Related]  

  • 47. C1 metabolism in Corynebacterium glutamicum: an endogenous pathway for oxidation of methanol to carbon dioxide.
    Witthoff S; Mühlroth A; Marienhagen J; Bott M
    Appl Environ Microbiol; 2013 Nov; 79(22):6974-83. PubMed ID: 24014532
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Variation of transition-state structure as a function of the nucleotide in reactions catalyzed by dehydrogenases. 2. Formate dehydrogenase.
    Hermes JD; Morrical SW; O'Leary MH; Cleland WW
    Biochemistry; 1984 Nov; 23(23):5479-88. PubMed ID: 6391544
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Aerobic and anaerobic growth of Paracoccus denitrificans on methanol.
    Bamforth CW; Quayle JR
    Arch Microbiol; 1978 Oct; 119(1):91-7. PubMed ID: 718372
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Formate dehydrogenase from Pseudomonas oxalaticus.
    Müller U; Willnow P; Ruschig U; Höpner T
    Eur J Biochem; 1978 Feb; 83(2):485-98. PubMed ID: 631130
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Catabolic enzymes of the acetogen Butyribacterium methylotrophicum grown on single-carbon substrates.
    Kerby R; Zeikus JG
    J Bacteriol; 1987 Dec; 169(12):5605-9. PubMed ID: 3316188
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Formaldehyde incorporation by a new methylotroph (L3).
    Hirt W; Papoutsakis E; Krug E; Lim HC; Tsao GT
    Appl Environ Microbiol; 1978 Jul; 36(1):56-62. PubMed ID: 567956
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Oxalate, formate, formamide, and methanol metabolism in Thiobacillus novellus.
    Chandra TS; Shethna YI
    J Bacteriol; 1977 Aug; 131(2):389-98. PubMed ID: 885836
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Methanol oxidation and assimilation in Hansenula polymorpha. An analysis by 13C n.m.r. in vivo.
    Jones JG; Bellion E
    Biochem J; 1991 Dec; 280 ( Pt 2)(Pt 2):475-81. PubMed ID: 1747123
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultrastructure of methanol-utilizing yeast cells: appearance of microbodies in relation to high catalase activity.
    Fukui S; Tanaka A; Kawamoto S; Yasuhara S; Teranishi Y; Osumi M
    J Bacteriol; 1975 Jul; 123(1):317-28. PubMed ID: 1170166
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microbial oxidation of methane and methanol: isolation of methane-utilizing bacteria and characterization of a facultative methane-utilizing isolate.
    Patel RN; Hou CT; Felix A
    J Bacteriol; 1978 Oct; 136(1):352-8. PubMed ID: 101517
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Formaldehyde dehydrogenase from Pseudomonas putida. Purification and some properties.
    Ando M; Yoshimoto T; Ogushi S; Rikitake K; Shibata S; Tsuru D
    J Biochem; 1979 May; 85(5):1165-72. PubMed ID: 571868
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabolic engineering of Komagataella phaffii for the efficient utilization of methanol.
    Wang Y; Li R; Zhao F; Wang S; Zhang Y; Fan D; Han S
    Microb Cell Fact; 2024 Jul; 23(1):198. PubMed ID: 39014373
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Nad-dependent formate dehydrogenase from methylotrophic bacteria. Characteristics and stability of soluble and immobilized enzyme].
    Rodionov IuB; Avilova TV; Popov VO
    Biokhimiia; 1977 Nov; 42(11):2020-6. PubMed ID: 22360
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bioconversion of methanol to formaldehyde. II. By purified methanol oxidase from modified yeast, Hansenula polymorpha.
    Sagiroglu A; Altay V
    Prep Biochem Biotechnol; 2006; 36(4):321-32. PubMed ID: 16971303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.