BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1016692)

  • 21. Effect of cholesterol on the molecular motion in the hydrocarbon region of lecithin bilayers studied by nanosecond fluorescence techniques.
    Kawato S; Kinosita K; Ikegami A
    Biochemistry; 1978 Nov; 17(23):5026-31. PubMed ID: 718871
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effect of compounds having hypotensive activity on microviscosity of phospholipids membranes].
    Goriushko AG; Shnurko EV; Chekman IS; Skurskiĭ SI
    Ukr Biokhim Zh (1978); 1992; 64(5):110-3. PubMed ID: 1462366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mobility and molecular orientation of vitamin E in liposomal membranes as determined by 19F NMR and fluorescence polarization techniques.
    Urano S; Matsuo M; Sakanaka T; Uemura I; Koyama M; Kumadaki I; Fukuzawa K
    Arch Biochem Biophys; 1993 May; 303(1):10-4. PubMed ID: 8489254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cholesterol dynamics in membranes.
    Yeagle PL; Albert AD; Boesze-Battaglia K; Young J; Frye J
    Biophys J; 1990 Mar; 57(3):413-24. PubMed ID: 2306492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers.
    Bernsdorff C; Wolf A; Winter R; Gratton E
    Biophys J; 1997 Mar; 72(3):1264-77. PubMed ID: 9138572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New fluorescent octadecapentaenoic acids as probes of lipid membranes and protein-lipid interactions.
    Mateo CR; Souto AA; Amat-Guerri F; Acuña AU
    Biophys J; 1996 Oct; 71(4):2177-91. PubMed ID: 8889194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A theoretical model of the temperature- and pressure-induced phase transition of phospholipid bilayers.
    Sugár IP
    Biophys Chem; 1982 May; 15(2):131-8. PubMed ID: 7093428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spectral properties and orientation of voltage-sensitive dyes in lipid membranes.
    Matson M; Carlsson N; Beke-Somfai T; Nordén B
    Langmuir; 2012 Jul; 28(29):10808-17. PubMed ID: 22738247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cholesterol modifies water concentration and dynamics in phospholipid bilayers: a fluorescence study using Laurdan probe.
    Parasassi T; Di Stefano M; Loiero M; Ravagnan G; Gratton E
    Biophys J; 1994 Mar; 66(3 Pt 1):763-8. PubMed ID: 8011908
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carriers and specificity in membranes. 3. Carrier-facilitated transport. Molecular motion in phospholipid bilayers and biomembranes.
    Hubbell WL
    Neurosci Res Program Bull; 1971 Jun; 9(3):357-61. PubMed ID: 4367591
    [No Abstract]   [Full Text] [Related]  

  • 31. Dynamic fluorescence quenching studies on lipid mobilities in phosphatidylcholine-cholesterol membranes.
    Merkle H; Subczynski WK; Kusumi A
    Biochim Biophys Acta; 1987 Feb; 897(2):238-48. PubMed ID: 3028480
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phase separation in phosphatidylcholine/anionic phospholipid membranes in the liquid-crystalline state revealed with fluorescent probes.
    Ahn T; Yun CH
    J Biochem; 1998 Sep; 124(3):622-7. PubMed ID: 9722675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transverse location of the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene in model lipid bilayer membrane systems by resonance excitation energy transfer.
    Davenport L; Dale RE; Bisby RH; Cundall RB
    Biochemistry; 1985 Jul; 24(15):4097-108. PubMed ID: 3931673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding interaction of differently charged fluorescent probes with egg yolk phosphatidylcholine and the effect of β-cyclodextrin on the lipid-probe complexes: a fluorometric investigation.
    Kundu P; Ghosh S; Jana B; Chattopadhyay N
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 142():15-24. PubMed ID: 25698439
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A fluorescence study of the binding of cytochrome C to mixed-phospholipid microvesicles : evidence for a preferred orientation of the bound protein.
    Teissié J; Baudras A
    Biochimie; 1977; 59(8-9):693-703. PubMed ID: 202339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organization and interaction of cholesterol and phosphatidylcholine in model bilayer membranes.
    Hyslop PA; Morel B; Sauerheber RD
    Biochemistry; 1990 Jan; 29(4):1025-38. PubMed ID: 2160270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rotational diffusion of a steroid molecule in phosphatidylcholine-cholesterol membranes: fluid-phase microimmiscibility in unsaturated phosphatidylcholine-cholesterol membranes.
    Pasenkiewicz-Gierula M; Subczynski WK; Kusumi A
    Biochemistry; 1990 May; 29(17):4059-69. PubMed ID: 2163271
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An ESR Spin label study of structural and dynamical properties of oriented lecithin-cholesterol multibilayers.
    Hemminga MA
    Chem Phys Lipids; 1975 Apr; 14(2):151-73. PubMed ID: 165012
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Model-independent analysis of the orientation of fluorescent probes with restricted mobility in muscle fibers.
    Dale RE; Hopkins SC; an der Heide UA; Marszałek T; Irving M; Goldman YE
    Biophys J; 1999 Mar; 76(3):1606-18. PubMed ID: 10049341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies of light emission, absorption and energy transfer in nerve membranes labelled with fluorescent probes.
    Tasaki I; Warashina A; Pant H
    Biophys Chem; 1976 Jan; 4(1):1-13. PubMed ID: 1247647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.