These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 10168875)

  • 1. Ultrasonic wave propagation in porous media: determination of acoustic parameters and high frequency limit of the classical models.
    Leclaire P; Kelders L; Lauriks W; Glorieux C; Thoen J
    Stud Health Technol Inform; 1997; 40():139-55. PubMed ID: 10168875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic wave propagation in bovine cancellous bone.
    Hosokawa A; Otani T
    J Acoust Soc Am; 1997 Jan; 101(1):558-62. PubMed ID: 9000743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabric dependence of wave propagation in anisotropic porous media.
    Cowin SC; Cardoso L
    Biomech Model Mechanobiol; 2011 Feb; 10(1):39-65. PubMed ID: 20461539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical and experimental study of attenuation in cancellous bone.
    Xu W; Xie W; Yu D; Sun H; Gu Y; Tao X; Qian M; Cheng L; Wang H; Cheng Q
    J Biomed Opt; 2024 Jan; 29(Suppl 1):S11526. PubMed ID: 38505736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic wave propagation in trabecular bone predicted by the stratified model.
    Lin W; Qin YX; Rubin C
    Ann Biomed Eng; 2001 Sep; 29(9):781-90. PubMed ID: 11599586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic wave propagation in cancellous and cortical bone: prediction of some experimental results by Biot's theory.
    Williams JL
    J Acoust Soc Am; 1992 Feb; 91(2):1106-12. PubMed ID: 1556311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic slow waves in air-saturated cancellous bone.
    Nicholson PH; Strelitzki R
    Ultrasonics; 1999 Sep; 37(6):445-9. PubMed ID: 10579032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic propagation in cancellous bone: a new stratified model.
    Hughes ER; Leighton TG; Petley GW; White PR
    Ultrasound Med Biol; 1999 Jun; 25(5):811-21. PubMed ID: 10414898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous material characterization--ultrasonic method for estimation of tortuosity and characteristic length using a barometric chamber.
    Moussatov A; Ayrault C; Castagnède B
    Ultrasonics; 2001 Apr; 39(3):195-202. PubMed ID: 11350000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short ultrasonic waves in cancellous bone.
    Kaczmarek M; Kubik J; Pakula M
    Ultrasonics; 2002 May; 40(1-8):95-100. PubMed ID: 12160076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving acoustic wave propagation models in highly attenuating porous materials.
    Bouchendouka A; Fellah ZEA; Nguyen CT; Ogam E; Perrot C; Duval A; Depollier C
    J Acoust Soc Am; 2024 Jan; 155(1):206-217. PubMed ID: 38180154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency dependence of ultrasonic backscatter from human trabecular bone: theory and experiment.
    Wear KA
    J Acoust Soc Am; 1999 Dec; 106(6):3659-64. PubMed ID: 10615704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of bone structure on ultrasonic attenuation and velocity.
    Tavakoli MB; Evans JA
    Ultrasonics; 1992; 30(6):389-95. PubMed ID: 1440986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Some new developments in the rheology of bone.
    Johnson M; Katz JL
    Biorheology Suppl; 1984; 1():169-74. PubMed ID: 6591972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biot theory: a review of its application to ultrasound propagation through cancellous bone.
    Haire TJ; Langton CM
    Bone; 1999 Apr; 24(4):291-5. PubMed ID: 10221540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of ultrasonic field propagation through layered media using the extended angular spectrum method.
    Vecchio CJ; Schafer ME; Lewin PA
    Ultrasound Med Biol; 1994; 20(7):611-22. PubMed ID: 7810021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scattering of ultrasound in cancellous bone: predictions from a theoretical model.
    Nicholson PH; Strelitzki R; Cleveland RO; Bouxsein ML
    J Biomech; 2000 Apr; 33(4):503-6. PubMed ID: 10768401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering criteria for biomaterials: some thought on in situ measurements.
    Katz JL
    Biomater Med Devices Artif Organs; 1979; 7(1):81-7. PubMed ID: 454785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase and group velocities of fast and slow compressional waves in trabecular bone.
    Padilla F; Laugier P
    J Acoust Soc Am; 2000 Oct; 108(4):1949-52. PubMed ID: 11051523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence.
    Fellah ZE; Berger S; Lauriks W; Depollier C; Aristégui C; Chapelon JY
    J Acoust Soc Am; 2003 May; 113(5):2424-33. PubMed ID: 12765361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.