These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 10168875)

  • 21. Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone.
    Lee KI; Hughes ER; Humphrey VF; Leighton TG; Choi MJ
    Phys Med Biol; 2007 Jan; 52(1):59-73. PubMed ID: 17183128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of elastic coefficients of bone and composite materials by acoustic immersion technique.
    Goldmann T; Seiner H; Landa M
    Technol Health Care; 2006; 14(4-5):219-32. PubMed ID: 17065745
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of transport parameters in air-saturated porous materials via reflected ultrasonic waves.
    Fellah ZE; Depollier C; Berger S; Lauriks W; Trompette P; Chapelon JY
    J Acoust Soc Am; 2003 Nov; 114(5):2561-9. PubMed ID: 14649992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasonic wave propagation in trabecular bone predicted by the stratified model.
    Lin W; Qin YX; Rubin C
    Ann Biomed Eng; 2001 Sep; 29(9):781-90. PubMed ID: 11599586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of an analytical solution of modified Biot's equations for the optimization of lightweight acoustic protection.
    Kanfoud J; Ali Hamdi M; Becot FX; Jaouen L
    J Acoust Soc Am; 2009 Feb; 125(2):863-72. PubMed ID: 19206863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasonic wave propagation in cancellous and cortical bone: prediction of some experimental results by Biot's theory.
    Williams JL
    J Acoust Soc Am; 1992 Feb; 91(2):1106-12. PubMed ID: 1556311
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.
    Nguyen VH; Naili S
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):861-76. PubMed ID: 25099567
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compressional wave propagation in saturated porous media and its numerical analysis using a space-time conservation element and solution element method.
    Yang D
    Rev Sci Instrum; 2021 Dec; 92(12):125108. PubMed ID: 34972452
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A multiscale poromicromechanical approach to wave propagation and attenuation in bone.
    Morin C; Hellmich C
    Ultrasonics; 2014 Jul; 54(5):1251-69. PubMed ID: 24457030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of viscoelastic and viscous absorption on ultrasonic wave propagation in cortical bone: Application to axial transmission.
    Naili S; Vu MB; Grimal Q; Talmant M; Desceliers C; Soize C; Haïat G
    J Acoust Soc Am; 2010 Apr; 127(4):2622-34. PubMed ID: 20370043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dependences of ultrasonic properties on frequency and trabecular spacing in trabecular-bone-mimicking phantoms.
    Lee KI
    J Acoust Soc Am; 2015 Feb; 137(2):EL194-9. PubMed ID: 25698050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measurements of ultrasonic phase velocities and attenuation of slow waves in cellular aluminum foams as cancellous bone-mimicking phantoms.
    Zhang C; Le LH; Zheng R; Ta D; Lou E
    J Acoust Soc Am; 2011 May; 129(5):3317-26. PubMed ID: 21568432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acoustic wave propagation in bovine cancellous bone: application of the Modified Biot-Attenborough model.
    Lee KI; Roh HS; Yoon SW
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2284-93. PubMed ID: 14587625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasonic slow waves in air-saturated cancellous bone.
    Nicholson PH; Strelitzki R
    Ultrasonics; 1999 Sep; 37(6):445-9. PubMed ID: 10579032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diversity of biomedical applications of acoustic radiation force.
    Sarvazyan A
    Ultrasonics; 2010 Feb; 50(2):230-4. PubMed ID: 19880152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling and analysis of multiple scattering of acoustic waves in complex media: application to the trabecular bone.
    Wojcik J; Litniewski J; Nowicki A
    J Acoust Soc Am; 2011 Oct; 130(4):1908-18. PubMed ID: 21973345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measuring static thermal permeability and inertial factor of rigid porous materials (L).
    Sadouki M; Fellah M; Fellah ZE; Ogam E; Sebaa N; Mitri FG; Depollier C
    J Acoust Soc Am; 2011 Nov; 130(5):2627-30. PubMed ID: 22087887
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasonic propagation in cancellous bone: a new stratified model.
    Hughes ER; Leighton TG; Petley GW; White PR
    Ultrasound Med Biol; 1999 Jun; 25(5):811-21. PubMed ID: 10414898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material.
    Gautier G; Kelders L; Groby JP; Dazel O; De Ryck L; Leclaire P
    J Acoust Soc Am; 2011 Sep; 130(3):1390-8. PubMed ID: 21895080
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Propagation of two longitudinal waves in a cancellous bone with the closed pore boundary.
    Mizuno K; Nagatani Y; Yamashita K; Matsukawa M
    J Acoust Soc Am; 2011 Aug; 130(2):EL122-7. PubMed ID: 21877770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.