These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 10168939)

  • 21. Design and validation of a knee brace with feedback to reduce the rate of loading.
    Riskowski JL; Mikesky AE; Bahamonde RE; Burr DB
    J Biomech Eng; 2009 Aug; 131(8):084503. PubMed ID: 19604026
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robot-assisted gait training in multiple sclerosis: a pilot randomized trial.
    Beer S; Aschbacher B; Manoglou D; Gamper E; Kool J; Kesselring J
    Mult Scler; 2008 Mar; 14(2):231-6. PubMed ID: 17942510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury.
    Emken JL; Harkema SJ; Beres-Jones JA; Ferreira CK; Reinkensmeyer DJ
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):322-34. PubMed ID: 18232376
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Joint kinetics during Tai Chi gait and normal walking gait in young and elderly Tai Chi Chuan practitioners.
    Wu G; Millon D
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):787-95. PubMed ID: 18342415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gait deviations associated with post-stroke hemiparesis: improvement during treadmill walking using weight support, speed, support stiffness, and handrail hold.
    Chen G; Patten C; Kothari DH; Zajac FE
    Gait Posture; 2005 Aug; 22(1):57-62. PubMed ID: 15996593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of increasing inertia upon vertical ground reaction forces and temporal kinematics during locomotion.
    De Witt JK; Hagan RD; Cromwell RL
    J Exp Biol; 2008 Apr; 211(Pt 7):1087-92. PubMed ID: 18344482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A do-it-yourself membrane-activated auditory feedback device for weight bearing and gait training: a case report.
    Batavia M; Gianutsos JG; Vaccaro A; Gold JT
    Arch Phys Med Rehabil; 2001 Apr; 82(4):541-5. PubMed ID: 11295019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptive impedance control of a robotic orthosis for gait rehabilitation.
    Hussain S; Xie SQ; Jamwal PK
    IEEE Trans Cybern; 2013 Jun; 43(3):1025-34. PubMed ID: 23193241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-point gait crutch walking: variability in ground reaction force during weight bearing.
    Li S; Armstrong CW; Cipriani D
    Arch Phys Med Rehabil; 2001 Jan; 82(1):86-92. PubMed ID: 11239291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Gait training in incomplete spinal cord injuries with body weight support].
    Alcobendas-Maestro M; López-Dolado E; Esclarín de Ruz A; Valdizán-Valledor MC
    Rev Neurol; 2004 Sep 1-15; 39(5):406-10. PubMed ID: 15378450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gait dynamics on an inclined walkway.
    McIntosh AS; Beatty KT; Dwan LN; Vickers DR
    J Biomech; 2006; 39(13):2491-502. PubMed ID: 16169000
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel biomechanical device improves gait pattern in patient with chronic nonspecific low back pain.
    Elbaz A; Mirovsky Y; Mor A; Enosh S; Debbi E; Segal G; Barzilay Y; Debi R
    Spine (Phila Pa 1976); 2009 Jul; 34(15):E507-12. PubMed ID: 19564755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A method of estimating the degree of active participation during stepping in a driven gait orthosis based on actuator force profile matching.
    Banz R; Bolliger M; Muller S; Santelli C; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):15-22. PubMed ID: 19211319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved gait parameters after robotic-assisted locomotor treadmill therapy in a 6-year-old child with cerebral palsy.
    Borggraefe I; Meyer-Heim A; Kumar A; Schaefer JS; Berweck S; Heinen F
    Mov Disord; 2008 Jan; 23(2):280-3. PubMed ID: 17999427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Robotic orthoses for body weight-supported treadmill training.
    Winchester P; Querry R
    Phys Med Rehabil Clin N Am; 2006 Feb; 17(1):159-72. PubMed ID: 16517349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of a minimally constraining, passively supported gait training exoskeleton: ALEX II.
    Winfree KN; Stegall P; Agrawal SK
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975499. PubMed ID: 22275695
    [TBL] [Abstract][Full Text] [Related]  

  • 37. VI.3. Rehabilitation robotics.
    Munih M; Bajd T
    Stud Health Technol Inform; 2010; 152():353-66. PubMed ID: 20407204
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resistance training using a novel robotic walker for over-ground gait rehabilitation: a preliminary study on healthy subjects.
    Mun KR; Yeo BBS; Guo Z; Chung SC; Yu H
    Med Biol Eng Comput; 2017 Oct; 55(10):1873-1881. PubMed ID: 28321683
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automatic suspension device for gait training.
    Kawamura J; Ide T; Hayashi S; Ono H; Honda T
    Prosthet Orthot Int; 1993 Aug; 17(2):120-5. PubMed ID: 8233768
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of reaching kinematics during mirror and parallel robot assisted movements.
    Kadivar Z; Sung C; Thompson Z; O'Malley M; Liebschner M; Deng Z
    Stud Health Technol Inform; 2011; 163():247-53. PubMed ID: 21335798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.