These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 10171605)

  • 1. The assessment of cerebral function during paediatric cardiopulmonary bypass.
    Kern FH; Greeley WJ; Ungerleider RM
    Perfusion; 1993 Jan; 8(1):63-70. PubMed ID: 10171605
    [No Abstract]   [Full Text] [Related]  

  • 2. The relation between arterial oxygen tension and cerebral blood flow during cardiopulmonary bypass.
    Kuebler WM; Goetz AE
    Eur J Cardiothorac Surg; 1998 Jan; 13(1):111-2. PubMed ID: 9504744
    [No Abstract]   [Full Text] [Related]  

  • 3. Cerebral vascular reactivity to carbon dioxide before and after cardiopulmonary bypass in children with congenital heart disease.
    Kawaguchi M; Ohsumi H; Ohnishi Y; Nakajima T; Kuro M
    J Thorac Cardiovasc Surg; 1993 Nov; 106(5):823-7. PubMed ID: 8231203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors influencing the change in cerebral hemodynamics in pediatric patients during and after corrective cardiac surgery of congenital heart diseases by means of full-flow cardiopulmonary bypass.
    Abdul-Khaliq H; Uhlig R; Böttcher W; Ewert P; Alexi-Meskishvili V; Lange PE
    Perfusion; 2002 May; 17(3):179-85. PubMed ID: 12017385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring the brain during cardiac surgery in children.
    Greeley WJ; Kern FH; Meliones J; Ungerleider RM
    Can J Anaesth; 1993 Apr; 40(4):291-7. PubMed ID: 8485787
    [No Abstract]   [Full Text] [Related]  

  • 6. Estimation of cerebral blood flow with near infrared spectroscopy and indocyanine green.
    Roberts I; Fallon P; Kirkham FJ; Lloyd-Thomas A; Cooper C; Maynard R; Elliot M; Edwards AD
    Lancet; 1993 Dec; 342(8884):1425. PubMed ID: 7901707
    [No Abstract]   [Full Text] [Related]  

  • 7. High flow rates during modified ultrafiltration decrease cerebral blood flow velocity and venous oxygen saturation in infants.
    Rodriguez RA; Ruel M; Broecker L; Cornel G
    Ann Thorac Surg; 2005 Jul; 80(1):22-8. PubMed ID: 15975333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The limits of detectable cerebral perfusion by transcranial Doppler sonography in neonates undergoing deep hypothermic low-flow cardiopulmonary bypass.
    Zimmerman AA; Burrows FA; Jonas RA; Hickey PR
    J Thorac Cardiovasc Surg; 1997 Oct; 114(4):594-600. PubMed ID: 9338645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of pH strategy on cerebral and collateral circulation during hypothermic cardiopulmonary bypass in cyanotic patients with heart disease: results of a randomized trial and real-time monitoring.
    Sakamoto T; Kurosawa H; Shin'oka T; Aoki M; Isomatsu Y
    J Thorac Cardiovasc Surg; 2004 Jan; 127(1):12-9. PubMed ID: 14752407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel cerebral physiologic monitoring to guide low-flow cerebral perfusion during neonatal aortic arch reconstruction.
    Andropoulos DB; Stayer SA; McKenzie ED; Fraser CD
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):491-9. PubMed ID: 12658190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Four-side near-infrared spectroscopy measured in a paediatric population during surgery for congenital heart disease.
    Amigoni A; Mozzo E; Brugnaro L; Tiberio I; Pittarello D; Stellin G; Bonato R
    Interact Cardiovasc Thorac Surg; 2011 May; 12(5):707-12. PubMed ID: 21335618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafiltration and paediatric cardiopulmonary bypass.
    Naik SK; Elliott MJ
    Perfusion; 1993 Jan; 8(1):101-12. PubMed ID: 10148133
    [No Abstract]   [Full Text] [Related]  

  • 13. Cerebral physiology in paediatric cardiopulmonary bypass.
    Pua HL; Bissonnette B
    Can J Anaesth; 1998 Oct; 45(10):960-78. PubMed ID: 9836033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebral perfusion during cardiopulmonary bypass in children: correlations between near-infrared spectroscopy, temperature, lactate, pump flow, and blood pressure.
    Haydin S; Onan B; Onan IS; Ozturk E; Iyigun M; Yeniterzi M; Bakir I
    Artif Organs; 2013 Jan; 37(1):87-91. PubMed ID: 23145943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relation between pump flow rate and pulsatility on cerebral hemodynamics during pediatric cardiopulmonary bypass.
    Chow G; Roberts IG; Edwards AD; Lloyd-Thomas A; Wade A; Elliott MJ; Kirkham FJ
    J Thorac Cardiovasc Surg; 1997 Oct; 114(4):568-77. PubMed ID: 9338642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in paediatric cardiopulmonary bypass.
    Elliott MJ
    Perfusion; 1999 Jul; 14(4):237-46. PubMed ID: 10456777
    [No Abstract]   [Full Text] [Related]  

  • 17. Measurement of cerebral-oxygenation status when commencing cardiopulmonary bypass in pediatric open-heart surgery.
    Murayama H; Tamaki S; Usui A; Ueda Y
    Ann Thorac Cardiovasc Surg; 2006 Apr; 12(2):105-12. PubMed ID: 16702931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain monitoring and protection during pediatric cardiac surgery.
    Williams GD; Ramamoorthy C
    Semin Cardiothorac Vasc Anesth; 2007 Mar; 11(1):23-33. PubMed ID: 17484171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulsatile flow improves cerebral blood flow in pediatric cardiopulmonary bypass.
    Wang W; Bai SY; Zhang HB; Bai J; Zhang SJ; Zhu DM
    Artif Organs; 2010 Nov; 34(11):874-8. PubMed ID: 21092029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limiting circulatory arrest using regional low flow perfusion.
    Kilpack VD; Stayer SA; McKenzie ED; Fraser CD; Andropoulos DB
    J Extra Corpor Technol; 2004 Jun; 36(2):133-8. PubMed ID: 15334752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.