These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 10171622)

  • 1. On the use of primary reference grade polydimethylsiloxane.
    Schmidt JA; von Recum AF
    J Appl Biomater; 1993; 4(1):73-5. PubMed ID: 10171622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra high molecular weight polyethylene and polydimethylsiloxane blend as acetabular cup material.
    Khorasani MT; Zaghiyan M; Mirzadeh H
    Colloids Surf B Biointerfaces; 2005 Mar; 41(2-3):169-74. PubMed ID: 15737543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Platelet consumption by NHLBI reference materials and SILASTIC [corrected].
    Ip WF; Sefton MV
    J Biomed Mater Res; 1991 Oct; 25(10):1321-4. PubMed ID: 1812123
    [No Abstract]   [Full Text] [Related]  

  • 4. Acute and chronic canine ex vivo blood interactions with NHLBI-DTB primary reference materials.
    McCoy TJ; Grasel TG; Okkema AZ; Cooper SL
    Biomaterials; 1989 May; 10(4):243-50. PubMed ID: 2742952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A canine ex vivo shunt for isotopic hemocompatibility evaluation of a NHLBI DTB primary reference material and of a IUPAC reference material.
    Caix J; Janvier G; Legault B; Bordenave L; Rouais F; Basse-Cathalinat B; Baquey C
    J Biomater Sci Polym Ed; 1994; 5(4):279-91. PubMed ID: 8025027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reference standards for implantable materials: problems and needs.
    Bruck SD; Mueller EP
    Med Prog Technol; 1989; 15(1-2):5-20. PubMed ID: 2530426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo leucocyte interactions with the NHLBI-DTB primary reference materials: polyethylene and silica-free polydimethylsiloxane.
    Spilizewski KL; Marchant RE; Anderson JM; Hiltner A
    Biomaterials; 1987 Jan; 8(1):12-7. PubMed ID: 3030455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane). III. In vivo biocompatibility and biostability.
    Hyung Park J; Bae YH
    J Biomed Mater Res A; 2003 Feb; 64(2):309-19. PubMed ID: 12522818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose permeable poly (dimethyl siloxane) poly (N-isopropyl acrylamide) interpenetrating networks as ophthalmic biomaterials.
    Liu L; Sheardown H
    Biomaterials; 2005 Jan; 26(3):233-44. PubMed ID: 15262466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface characterization using chemical force microscopy and the flow performance of modified polydimethylsiloxane for microfluidic device applications.
    Wang B; Abdulali-Kanji Z; Dodwell E; Horton JH; Oleschuk RD
    Electrophoresis; 2003 May; 24(9):1442-50. PubMed ID: 12731032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicone-based vascular prosthesis: assessment of the mechanical properties.
    Larena-Avellaneda A; Dittmann G; Haacke C; Graunke F; Siegel R; Dietz UA; Debus ES
    Ann Vasc Surg; 2008 Jan; 22(1):106-14. PubMed ID: 18083333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review.
    BĂ©langer MC; Marois Y
    J Biomed Mater Res; 2001; 58(5):467-77. PubMed ID: 11505420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro biocompatibility of PTMO-based polyurethanes and those containing PDMS blocks.
    Hsu SH; Tseng HJ
    J Biomater Appl; 2004 Oct; 19(2):135-46. PubMed ID: 15381786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological investigations of cells that adhered to the irregular patterned polydimethylsiloxane (PDMS) surface without reagents.
    Chung SH; Min J
    Ultramicroscopy; 2009 Jul; 109(8):861-7. PubMed ID: 19427124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peritoneal macrophage response: an in vivo model for the study of synthetic materials.
    Freyria AM; Chignier E; Guidollet J; Louisot P
    Biomaterials; 1991 Mar; 12(2):111-8. PubMed ID: 1831674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems.
    Mata A; Fleischman AJ; Roy S
    Biomed Microdevices; 2005 Dec; 7(4):281-93. PubMed ID: 16404506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative role of surface chemistry and surface texture in blood-material interactions.
    Didisheim P; Tirrell MV; Lyons CS; Stropp JQ; Dewanjee MK
    Trans Am Soc Artif Intern Organs; 1983; 29():169-76. PubMed ID: 6231758
    [No Abstract]   [Full Text] [Related]  

  • 18. Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization.
    Goda T; Konno T; Takai M; Moro T; Ishihara K
    Biomaterials; 2006 Oct; 27(30):5151-60. PubMed ID: 16797692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physico-chemical and biological evaluation of excimer laser irradiated polyethylene terephthalate (pet) surfaces.
    Mayer G; Blanchemain N; Dupas-Bruzek C; Miri V; Traisnel M; Gengembre L; Derozier D; Hildebrand HF
    Biomaterials; 2006 Feb; 27(4):553-66. PubMed ID: 16024074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crosslinked polyethylene standard aids effort to improve surgical implants.
    Stand News; 2004 Apr; 32(4):18-9. PubMed ID: 15112680
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.