These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 10172043)

  • 21. Controlled release of newer quinolones from biodegradable systems based on poly(lactic acid).
    Andreopoulos AG
    J Biomater Appl; 1995 Oct; 10(2):163-70. PubMed ID: 8618209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Progress in the study of pH and temperature sensitive biodegradable block copolymers].
    Hao TN; Qiao MX; Li Z; Chen DW
    Yao Xue Xue Bao; 2008 Feb; 43(2):123-7. PubMed ID: 18507336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 5-Fluorouracil-loaded PLA/PLGA PEG-PPG-PEG polymeric nanoparticles: formulation, in vitro characterization and cell culture studies.
    Ocal H; Arica-Yegin B; Vural I; Goracinova K; Caliş S
    Drug Dev Ind Pharm; 2014 Apr; 40(4):560-7. PubMed ID: 23596973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient delivery of antitumor drug to the nuclei of tumor cells by amphiphilic biodegradable poly(L-aspartic acid-co-lactic acid)/DPPE co-polymer nanoparticles.
    Han S; Liu Y; Nie X; Xu Q; Jiao F; Li W; Zhao Y; Wu Y; Chen C
    Small; 2012 May; 8(10):1596-606. PubMed ID: 22411637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Intravitreal drug delivery by microspheres of biodegradable polymers].
    Moritera T; Ogura Y; Honda Y; Wada R; Hyon SH; Ikada Y
    Nippon Ganka Gakkai Zasshi; 1990 May; 94(5):508-13. PubMed ID: 2220493
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradable poly(DL-lactic acid) formulations in a calcitonin delivery system.
    Asano M; Yoshida M; Omichi H; Mashimo T; Okabe K; Yuasa H; Yamanaka H; Morimoto S; Sakakibara H
    Biomaterials; 1993 Aug; 14(10):797-9. PubMed ID: 8218732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioplastics from feather quill.
    Ullah A; Vasanthan T; Bressler D; Elias AL; Wu J
    Biomacromolecules; 2011 Oct; 12(10):3826-32. PubMed ID: 21888378
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diffusion-controlled drug delivery systems: calculation of the required composition to achieve desired release profiles.
    Siepmann J; Lecomte F; Bodmeier R
    J Control Release; 1999 Aug; 60(2-3):379-89. PubMed ID: 10425342
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystallization of high-amylose starch by the addition of plasticizers at low and intermediate concentrations.
    Zhang Y; Han JH
    J Food Sci; 2010; 75(1):N8-16. PubMed ID: 20492189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers: I. Synthesis and characterization.
    Wang N; Wu XS; Li C; Feng MF
    J Biomater Sci Polym Ed; 2000; 11(3):301-18. PubMed ID: 10841281
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of plasticizers on compatibility, mechanical properties, and adhesion strength of drug-free Eudragit E films.
    Lin SY; Lee CJ; Lin YY
    Pharm Res; 1991 Sep; 8(9):1137-43. PubMed ID: 1788159
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel Hot Melt Extruded Matrices of Hydroxypropyl Cellulose and Amorphous Felodipine-Plasticized Hydroxypropyl Methylcellulose as Controlled Release Systems.
    Yi S; Wang J; Lu Y; Ma R; Gao Q; Liu S; Xiong S
    AAPS PharmSciTech; 2019 Jun; 20(6):219. PubMed ID: 31201583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid).
    Shi X; Zhang G; Phuong TV; Lazzeri A
    Molecules; 2015 Jan; 20(1):1579-93. PubMed ID: 25608041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of glycerol on the physical and mechanical properties of thin gellan gum films for oral drug delivery.
    Paolicelli P; Petralito S; Varani G; Nardoni M; Pacelli S; Di Muzio L; Tirillò J; Bartuli C; Cesa S; Casadei MA; Adrover A
    Int J Pharm; 2018 Aug; 547(1-2):226-234. PubMed ID: 29787893
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biodegradable block copolymers as injectable drug-delivery systems.
    Jeong B; Bae YH; Lee DS; Kim SW
    Nature; 1997 Aug; 388(6645):860-2. PubMed ID: 9278046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Investigation of biodegradable materials as polymeric gene carriers].
    Yang Y; Jia W; Qi X; Zeng W; Yang F; Xie Y; Yang W; Zhang Z; Zhou S; Li X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Jun; 23(3):573-7. PubMed ID: 16856392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new vitreal drug delivery system using an implantable biodegradable polymeric device.
    Kimura H; Ogura Y; Hashizoe M; Nishiwaki H; Honda Y; Ikada Y
    Invest Ophthalmol Vis Sci; 1994 May; 35(6):2815-9. PubMed ID: 8188476
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of plasticizers on the release of theophylline from microporous-controlled tablets.
    Lin WJ; Lee HK; Wang DM
    J Control Release; 2004 Oct; 99(3):415-21. PubMed ID: 15451599
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel biodegradable polymers as gene carriers.
    Yang Y; Jia W; Qi X; Yang C; Liu L; Zhang Z; Ma J; Zhou S; Li X
    Macromol Biosci; 2004 Dec; 4(12):1113-7. PubMed ID: 15586388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An interfacially plasticized electro-responsive hydrogel for transdermal electro-activated and modulated (TEAM) drug delivery.
    Indermun S; Choonara YE; Kumar P; du Toit LC; Modi G; Luttge R; Pillay V
    Int J Pharm; 2014 Feb; 462(1-2):52-65. PubMed ID: 24257244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.