BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 10172072)

  • 1. Processing and characterization of absorbable polylactide polymers for use in surgical implants.
    Andriano KP; Pohjonen T; Törmälä P
    J Appl Biomater; 1994; 5(2):133-40. PubMed ID: 10172072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of load and temperature on in vitro degradation of poly(glycolide-co-L-lactide) multifilament braids.
    Deng M; Zhou J; Chen G; Burkley D; Xu Y; Jamiolkowski D; Barbolt T
    Biomaterials; 2005 Jul; 26(20):4327-36. PubMed ID: 15683657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(anhydride-ester) fibers: role of copolymer composition on hydrolytic degradation and mechanical properties.
    Whitaker-Brothers K; Uhrich K
    J Biomed Mater Res A; 2004 Aug; 70(2):309-18. PubMed ID: 15227676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technique paper for wet-spinning poly(L-lactic acid) and poly(DL-lactide-co-glycolide) monofilament fibers.
    Nelson KD; Romero A; Waggoner P; Crow B; Borneman A; Smith GM
    Tissue Eng; 2003 Dec; 9(6):1323-30. PubMed ID: 14670119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of absorbable poly(ortho esters) for use in surgical implants.
    Daniels AU; Andriano KP; Smutz WP; Chang MK; Heller J
    J Appl Biomater; 1994; 5(1):51-64. PubMed ID: 10146697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies.
    Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT
    Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing biodegradable multiblock PCL/PLA thermoplastic elastomers.
    Cohn D; Salomon AH
    Biomaterials; 2005 May; 26(15):2297-305. PubMed ID: 15585232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processing, annealing and sterilisation of poly-L-lactide.
    Weir NA; Buchanan FJ; Orr JF; Farrar DF; Boyd A
    Biomaterials; 2004 Aug; 25(18):3939-49. PubMed ID: 15046884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable films of partly branched poly(l-lactide)-co-poly(epsilon-caprolactone) copolymer: modulation of phase morphology, plasticization properties and thermal depolymerization.
    Broström J; Boss A; Chronakis IS
    Biomacromolecules; 2004; 5(3):1124-34. PubMed ID: 15132708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-conventional injection molding of poly(lactide) and poly(epsilon-caprolactone) intended for orthopedic applications.
    Altpeter H; Bevis MJ; Grijpma DW; Feijen J
    J Mater Sci Mater Med; 2004 Feb; 15(2):175-84. PubMed ID: 15330053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of guided bone regeneration membrane composed of beta-tricalcium phosphate and poly (L-lactide-co-glycolide-co-epsilon-caprolactone) composites.
    Kikuchi M; Koyama Y; Yamada T; Imamura Y; Okada T; Shirahama N; Akita K; Takakuda K; Tanaka J
    Biomaterials; 2004 Dec; 25(28):5979-86. PubMed ID: 15183612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering.
    Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH
    J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of hydroxylapatite/poly(L-lactide) composites: mechanical behavior.
    Verheyen CC; de Wijn JR; van Blitterswijk CA; de Groot K
    J Biomed Mater Res; 1992 Oct; 26(10):1277-96. PubMed ID: 1331112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary characterization of bioresorbable and nonresorbable synthetic fibers for the repair of soft tissue injuries.
    Shieh SJ; Zimmerman MC; Parsons JR
    J Biomed Mater Res; 1990 Jul; 24(7):789-808. PubMed ID: 2398072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of poly-L-lactide. Part 2: increased temperature accelerated degradation.
    Weir NA; Buchanan FJ; Orr JF; Farrar DF; Dickson GR
    Proc Inst Mech Eng H; 2004; 218(5):321-30. PubMed ID: 15532997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strength retention properties of self-reinforced poly L-lactide (SR-PLLA) sutures compared with polyglyconate (Maxon) and polydioxanone (PDS) sutures. An in vitro study.
    Mäkelä P; Pohjonen T; Törmälä P; Waris T; Ashammakhi N
    Biomaterials; 2002 Jun; 23(12):2587-92. PubMed ID: 12033607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of different steam-sterilization programs on material properties of poly(L-lactide).
    Rozema FR; Bos RR; Boering G; van Asten JA; Nijenhuis AJ; Pennings AJ
    J Appl Biomater; 1991; 2(1):23-8. PubMed ID: 10150042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and properties of poly(L-lactide)/hydroxyapatite composites.
    Kesenci K; Fambri L; Migliaresi C; Pişkin E
    J Biomater Sci Polym Ed; 2000; 11(6):617-32. PubMed ID: 10981677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sterility, mechanical properties, and molecular stability of polylactide internal-fixation devices treated with low-temperature plasmas.
    Gogolewski S; Mainil-Varlet P; Dillon JG
    J Biomed Mater Res; 1996 Oct; 32(2):227-35. PubMed ID: 8884500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of poly(DL-lactide)-grafted gelatins as bioabsorbable amphiphilic polymers.
    Ma J; Cao H; Li Y; Li Y
    J Biomater Sci Polym Ed; 2002; 13(1):67-80. PubMed ID: 12003076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.