These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 10172393)

  • 1. Evaluation of five in-line hematocrit monitors.
    Niles S; Cronbaugh R; Engle J; Ploessl J; Sutton R
    J Extra Corpor Technol; 1995 Mar; 27(1):24-8. PubMed ID: 10172393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of in-line venous saturation and hematocrit monitors in pediatric perfusion.
    Yaskulka SM; Burnside J; Bennett D; Olshove V; Langwell J
    J Extra Corpor Technol; 1995 Sep; 27(3):132-6. PubMed ID: 10172476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical comparisons of continuous venous oxygen saturation and hematocrit monitors in pediatric surgery.
    Bennett D; Burnside J; Langwell J; Beckley PD
    J Extra Corpor Technol; 1993; 25(4):140-4. PubMed ID: 10172011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical evaluation of a new saturation/hematocrit monitor.
    Miller MF; Luckenbach J; Chen C
    J Extra Corpor Technol; 1992; 24(2):55-7. PubMed ID: 10171574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro evaluation of continuous mixed venous oxygen saturation and hematocrit monitors.
    Brown ME; Rawleigh JD; Gallagher JM
    J Extra Corpor Technol; 1994 Dec; 26(4):189-93. PubMed ID: 10150683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic devices for continuous blood plasma separation and analysis during pediatric cardiopulmonary bypass procedures.
    Yang S; Ji B; Undar A; Zahn JD
    ASAIO J; 2006; 52(6):698-704. PubMed ID: 17117061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemodilutional anemia impairs neurologic outcome after cardiopulmonary bypass in a piglet model.
    Miura T; Sakamoto T; Kobayashi M; Shin'oka T; Kurosawa H
    J Thorac Cardiovasc Surg; 2007 Jan; 133(1):29-36. PubMed ID: 17198777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical accuracy of continuous hemoglobin oxygen saturation monitoring devices.
    Bolen GZ; Anderson GE; Huddleson JR; Riley JB; Sutton RG; Bishop DG
    J Extra Corpor Technol; 1990; 22(2):61-6. PubMed ID: 10171101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous Blood Viscosity Monitoring System for Cardiopulmonary Bypass Applications.
    Okahara S; Soh Z; Miyamoto S; Takahashi H; Takahashi S; Sueda T; Tsuji T
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1503-1512. PubMed ID: 27662668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal perfusion during cardiopulmonary bypass: an evidence-based approach.
    Murphy GS; Hessel EA; Groom RC
    Anesth Analg; 2009 May; 108(5):1394-417. PubMed ID: 19372313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygenator evaluation: Maxima 1380 versus Maxima Plus.
    Engle JH; Ploessl J; Sutton R
    J Extra Corpor Technol; 1995 Mar; 27(1):15-8. PubMed ID: 10150756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hematological effects of a low-prime neonatal cardiopulmonary bypass circuit utilizing vacuum-assisted venous return in the porcine model.
    Ahlberg K; Sistino JJ; Nemoto S
    J Extra Corpor Technol; 1999 Dec; 31(4):195-201. PubMed ID: 10915477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiopulmonary bypass temperature, hematocrit, and cerebral oxygen delivery in humans.
    Cook DJ; Oliver WC; Orszulak TA; Daly RC; Bryce RD
    Ann Thorac Surg; 1995 Dec; 60(6):1671-7. PubMed ID: 8787461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical evaluation of a new in-line continuous blood gas monitor.
    Southworth R; Sutton R; Mize S; Stammers AH; Fristoe LW; Cook D; Hostetler D; Richenbacher WE
    J Extra Corpor Technol; 1998 Dec; 30(4):166-70. PubMed ID: 10537576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coronary artery bypass grafting with a minimized cardiopulmonary bypass circuit: a prospective, randomized trial.
    Sakwa MP; Emery RW; Shannon FL; Altshuler JM; Mitchell D; Zwada D; Holter AR
    J Thorac Cardiovasc Surg; 2009 Feb; 137(2):481-5. PubMed ID: 19185173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of priming techniques of ultrafiltrators on blood rheology: an in vitro evaluation.
    Glogowski KR; Stammers AH; Niimi KS; Tremain KD; Muhle ML; Trowbridge CC
    Perfusion; 2001 May; 16(3):221-8. PubMed ID: 11419658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro comparison of the new in-line monitor BMU 40 versus a conventional laboratory analyzer.
    Grosse FO; Holzhey D; Falk V; Schaarschmidt J; Kraemer K; Mohr FW
    J Extra Corpor Technol; 2010 Mar; 42(1):61-70. PubMed ID: 20437794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebral perfusion during cardiopulmonary bypass in children: correlations between near-infrared spectroscopy, temperature, lactate, pump flow, and blood pressure.
    Haydin S; Onan B; Onan IS; Ozturk E; Iyigun M; Yeniterzi M; Bakir I
    Artif Organs; 2013 Jan; 37(1):87-91. PubMed ID: 23145943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laboratory evaluation of a new membrane oxygenator with a built-in hemoconcentrator.
    Nishida H; Suzuki S; Endo M; Koyanagi H; Kuwana K; Nakanishi H; Aoki M
    J Extra Corpor Technol; 1997 Dec; 29(4):189-93. PubMed ID: 10176128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductivity-based hematocrit measurement during cardiopulmonary bypass.
    Steinfelder-Visscher J; Weerwind PW; Teerenstra S; Pop GA; Brouwer RM
    J Clin Monit Comput; 2007 Feb; 21(1):7-12. PubMed ID: 17086448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.