These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 101737)

  • 21. Fully active Fe-protein of the nitrogenase from Azotobacter vinelandii contains at least eight iron atoms and eight sulphide atoms per molecule.
    Braaksma A; Haaker H; Veeger C
    Eur J Biochem; 1983 Jun; 133(1):71-6. PubMed ID: 6574018
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solubilization of the iron molybdenum cofactor of Azotobacter vinelandii nitrogenase in dimethylformamide and acetonitrile.
    Lough SM; Jacobs DL; Lyons DM; Watt GD; McDonald JW
    Biochem Biophys Res Commun; 1986 Sep; 139(2):740-6. PubMed ID: 3021140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molybdenum in nitrogenase.
    Shah VK; Ugalde RA; Imperial J; Brill WJ
    Annu Rev Biochem; 1984; 53():231-57. PubMed ID: 6383195
    [No Abstract]   [Full Text] [Related]  

  • 24. Incorporation of adenine into the modifying group of inactive iron protein of nitrogenase from Rhodospirillum rubrum.
    Nordlund S; Ludden PW
    Biochem J; 1983 Mar; 209(3):881-4. PubMed ID: 6409076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electron microscopy of the Mo-Fe protein from Azotobacter nitrogenase.
    Stasny JT; Burns RC; Korant BD; Hardy RW
    J Cell Biol; 1974 Jan; 60(1):311-6. PubMed ID: 4855593
    [No Abstract]   [Full Text] [Related]  

  • 26. Nitrogenase of Azotobacter chroococcum: a new electron-paramagnetic-resonance signal associated with a transient species of the Mo-Fe protein during catalysis.
    Yates MG; Lowe DJ
    FEBS Lett; 1976 Dec; 72(1):121-6. PubMed ID: 187450
    [No Abstract]   [Full Text] [Related]  

  • 27. Studies on the effect of NAD(H) on nitrogenase activity in Rhodospirillum rubrum.
    Soliman A; Nordlund S
    Arch Microbiol; 1992; 157(5):431-5. PubMed ID: 1510568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purification and characterization of the alternative nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum.
    Davis R; Lehman L; Petrovich R; Shah VK; Roberts GP; Ludden PW
    J Bacteriol; 1996 Mar; 178(5):1445-50. PubMed ID: 8631723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Iron K-edge X-ray-absorption spectroscopy of the iron-vanadium cofactor of the vanadium nitrogenase from Azotobacter chroococcum.
    Harvey I; Arber JM; Eady RR; Smith BE; Garner CD; Hasnain SS
    Biochem J; 1990 Mar; 266(3):929-31. PubMed ID: 2327976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Regulation of nitrogenase biosynthesis in microorganisms].
    L'vov NP; Sergeev NS; Kretovich VL
    Izv Akad Nauk SSSR Biol; 1975; (1):33-43. PubMed ID: 803994
    [No Abstract]   [Full Text] [Related]  

  • 31. Electron transport to nitrogenase in Rhodospirillum rubrum: identification of a new fdxN gene encoding the primary electron donor to nitrogenase.
    Edgren T; Nordlund S
    FEMS Microbiol Lett; 2005 Apr; 245(2):345-51. PubMed ID: 15837392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitrogenase in Azotobacter chroococcum and Klebsiella pneumoniae.
    Eady RR; Kennedy C; Smith BE; Thorneley RN; Yates G; Postgate JR
    Biochem Soc Trans; 1975; 3(4):488-92. PubMed ID: 1102367
    [No Abstract]   [Full Text] [Related]  

  • 33. Acetylene reduction by the iron-molybdenum cofactor from nitrogenase.
    Shah VK; Chisnell JR; Brill WJ
    Biochem Biophys Res Commun; 1978 Mar; 81(1):232-6. PubMed ID: 656098
    [No Abstract]   [Full Text] [Related]  

  • 34. Large-scale purification of high activity Azotobacter vinelandII nitrogenase.
    Burgess BK; Jacobs DB; Stiefel EI
    Biochim Biophys Acta; 1980 Jul; 614(1):196-209. PubMed ID: 6930977
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The vanadium- and molybdenum-containing nitrogenases of Azotobacter chroococcum. Comparison of mid-point potentials and kinetics of reduction by sodium dithionite of the iron proteins with bound magnesium adenosine 5'-diphosphate.
    Bergström J; Eady RR; Thorneley RN
    Biochem J; 1988 Apr; 251(1):165-9. PubMed ID: 3164616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molybdenum nitrogenase of Azotobacter chroococcum. Tight binding of MgADP to the MoFe protein.
    Miller RW; Eady RR
    Biochem J; 1989 Nov; 263(3):725-9. PubMed ID: 2597127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Necessity of a membrane component for nitrogenase activity in Rhodospirillum rubrum.
    Nordlund S; Eriksson U; Baltscheffsky H
    Biochim Biophys Acta; 1977 Oct; 462(1):187-95. PubMed ID: 410446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molybdenum-independent nitrogenases of Azotobacter vinelandii: a functional species of alternative nitrogenase-3 isolated from a molybdenum-tolerant strain contains an iron-molybdenum cofactor.
    Pau RN; Eldridge ME; Lowe DJ; Mitchenall LA; Eady RR
    Biochem J; 1993 Jul; 293 ( Pt 1)(Pt 1):101-7. PubMed ID: 8392330
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The amino acid sequence of the nitrogenase iron protein from Azotobacter vinelandii.
    Hausinger RP; Howard JB
    J Biol Chem; 1982 Mar; 257(5):2483-90. PubMed ID: 6801032
    [No Abstract]   [Full Text] [Related]  

  • 40. A novel covalent modification of nitrogenase in a cyanobacterium.
    Gallon JR; Cheng J; Dougherty LJ; Gallon VA; Hilz H; Pederson DM; Richards HM; Rüggeberg S; Smith CJ
    FEBS Lett; 2000 Feb; 468(2-3):231-3. PubMed ID: 10692592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.