These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 10174265)

  • 1. An in vitro evaluation of an automatic clamp for use with centrifugal pumps.
    Vocelka CR; Thomas R
    J Extra Corpor Technol; 1997 Sep; 29(3):154-7. PubMed ID: 10174265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assisted venous drainage presents the risk of undetected air microembolism.
    Lapietra A; Grossi EA; Pua BB; Esposito RA; Galloway AC; Derivaux CC; Glassman LR; Culliford AT; Ribakove GH; Colvin SB
    J Thorac Cardiovasc Surg; 2000 Nov; 120(5):856-62. PubMed ID: 11044310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of HL-20 roller pump and Rotaflow centrifugal pump on perfusion quality and gaseous microemboli delivery.
    Yee S; Qiu F; Su X; Rider A; Kunselman AR; Guan Y; Undar A
    Artif Organs; 2010 Nov; 34(11):937-43. PubMed ID: 20946282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Centrifugal pump failures.
    Kolff J; Ankney RN; Wurzel D; Devineni R
    J Extra Corpor Technol; 1996 Sep; 28(3):118-22. PubMed ID: 10163498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients.
    Qiu F; Guan Y; Su X; Kunselman A; Undar A
    Artif Organs; 2010 Nov; 34(11):923-9. PubMed ID: 21092035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency of an air filter at the drainage site in a closed circuit with a centrifugal blood pump: an in vitro study.
    Mitsumaru A; Yozu R; Matayoshi T; Morita M; Shin H; Tsutsumi K; Iino Y; Kawada S
    ASAIO J; 2001; 47(6):692-5. PubMed ID: 11730213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arterial venous bridge on cardiopulmonary bypass.
    Diesfeld T; Lajos TZ; Schimert G
    J Card Surg; 1994 Mar; 9(2):128-30. PubMed ID: 8012100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracorporeal shunt: a theoretical approach to the prevention of arterial hyperoxia and the reduction of gaseous emboli during cardiopulmonary bypass.
    Weightman WM; Gibbs NM
    Anesth Analg; 1996 Mar; 82(3):672-3. PubMed ID: 8623987
    [No Abstract]   [Full Text] [Related]  

  • 9. Experimental use of a compact centrifugal pump and membrane oxygenator as a cardiopulmonary support system.
    Suenaga E; Naito K; Cao ZL; Suda H; Ueno T; Natsuaki M; Itoh T
    Artif Organs; 2000 Nov; 24(11):912-5. PubMed ID: 11119082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical performance comparison between RotaFlow and CentriMag centrifugal blood pumps in an adult ECLS model.
    Yulong Guan ; Xiaowei Su ; McCoach R; Kunselman A; El-Banayosy A; Undar A
    Perfusion; 2010 Mar; 25(2):71-6. PubMed ID: 20212070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Air trapping ability of the Spiral Gold membrane oxygenator: an ex vivo study.
    Mueller XM; Tevaearai HT; van Ness K; Horisberger J; Augstburger M; Burki M; von Segesser LK
    Perfusion; 1998 Jan; 13(1):53-7. PubMed ID: 9500249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Additional veno-venous gas exchange as a problem-solving strategy for an oxygenator not transferring oxygen in paediatric cardiopulmonary bypass.
    Boettcher W; Sinzobahamvya N; Dehmel F; Matschke A; Iben A; Cho MY; Redlin M; Photiadis J
    Interact Cardiovasc Thorac Surg; 2017 Nov; 25(5):687-689. PubMed ID: 29049743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of the dynamic air bubble trap on cerebral microemboli and S100 beta.
    Motallebzadeh R; Jahangiri M
    J Thorac Cardiovasc Surg; 2004 Jul; 128(1):154. PubMed ID: 15224035
    [No Abstract]   [Full Text] [Related]  

  • 14. First clinical experience with the air purge control and electrical remote-controlled tubing clamp in mini bypass.
    Huybregts RM; Veerman DP; Vonk AB; Nesselaar AF; Paulus RC; Thone-Passchier DH; Smith AL; de Vroege R
    Artif Organs; 2006 Sep; 30(9):721-4. PubMed ID: 16934103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized veno-venous bypass with the affinity pump.
    Jaggy C; Lachat M; Inderbitzin D; Leskosek B; Candinas D; Burkhard T; Turina M
    ASAIO J; 2001; 47(1):56-9. PubMed ID: 11199316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Runaway pump head: new cause of gas embolism during cardiopulmonary bypass.
    Kurusz M; Shaffer CW; Christman EW; Tyers GF
    J Thorac Cardiovasc Surg; 1979 May; 77(5):792-5. PubMed ID: 431117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foam formation and acute air emboli with the maquet paediatric Quadrox I: a word of caution.
    Fouilloux V; Davey L; Van Arsdell GS; Honjo O
    Interact Cardiovasc Thorac Surg; 2014 Jul; 19(1):163-5. PubMed ID: 24706171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel measurement and delivery system for synchronizing oxygen gas flow with blood flow during cardiopulmonary bypass.
    Okahara S; Ninomiya S; Miyamoto S; Takahashi H; Kurosaki T; Sueda T
    Perfusion; 2013 Sep; 28(5):403-8. PubMed ID: 23633506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of oxygenator characteristics on its capability to remove gaseous microemboli.
    De Somer F
    J Extra Corpor Technol; 2007 Dec; 39(4):271-3. PubMed ID: 18293817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow Awareness as a New Safety Device for Cardiopulmonary Bypass.
    Brolhorst J; Peterson B; Holt DW
    J Extra Corpor Technol; 2019 Mar; 51(1):20-25. PubMed ID: 30936584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.