These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 101757)

  • 1. Utilization of the 16O(n,p) reaction for monitoring the output of 14 MeV neutron generators.
    Buchanan RJ; Beach JL
    Med Phys; 1978; 5(5):387-90. PubMed ID: 101757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 16O(n, p)16N: a fast neutron detector for rapid tissue inhomogeneity correction.
    Beach JL; Watts RJ; Milavickas LR
    Med Phys; 1981; 8(3):347-52. PubMed ID: 6798392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of total body nitrogen and oxygen by irradiation with cyclotron neutrons and 'delayed' gamma ray counting.
    Spinks TJ; Goode AW; Ranicar AS; Steere E
    Phys Med Biol; 1984 Apr; 29(4):385-94. PubMed ID: 6718490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New neutron sources.
    Almond PR
    Int J Radiat Oncol Biol Phys; 1982 Dec; 8(12):2045-8. PubMed ID: 6819264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Clatterbridge high-energy neutron therapy facility: specification and performance.
    Bonnett DE; Blake SW; Shaw JE; Bewley DK
    Br J Radiol; 1988 Jan; 61(721):38-46. PubMed ID: 3126848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light charged-particle production in 96 MeV neutron-induced reactions on carbon and oxygen.
    Tippawan U; Pomp S; Blomgren J; Dangtip S; Johansson C; Klug J; Mermod P; Nilsson L; Ohrn A; Osterlund M; Olsson N; Prokofiev AV; Nadel-Turonski P; Corcalciuc V; Koning AJ; Watanabe Y
    Radiat Prot Dosimetry; 2007; 126(1-4):35-9. PubMed ID: 17496294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of useful neutron flux for accelerator boron neutron capture therapy using the 7Li(p,n) reaction.
    Zimin S; Allen BJ
    Australas Phys Eng Sci Med; 1998 Dec; 21(4):193-9. PubMed ID: 10050350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Principle of neutron teletherapy with the Soviet U-120 cyclotron].
    Letov VN; Bel'skiĭ EM; Ievlev SM; Komov AI; Protasevich ET
    Med Radiol (Mosk); 1987 Jun; 32(6):27-33. PubMed ID: 3110536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dosimetry of gamma rays from nitrogen-16 decay.
    Carneiro de Sousa FN; Eichholz GG
    Int J Appl Radiat Isot; 1985 Dec; 36(12):981-4. PubMed ID: 4086110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurements of the neutron yields from 7Li(p,n)7Be reaction (thick target) with incident energies from 1.885 to 2.0 MeV.
    Yu W; Yue G; Han X; Chen J; Tian B
    Med Phys; 1998 Jul; 25(7 Pt 1):1222-4. PubMed ID: 9682210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kerma coefficients for neutron scattering on 12C and 16O at 96 MeV.
    Mermod P; Blomgren J; Nilsson L; Pomp S; Ohrn A; Osterlund M; Prokofiev A; Tippawan U
    Radiat Prot Dosimetry; 2007; 126(1-4):113-8. PubMed ID: 17575301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absolute fluence measurement for a prototype neutron radiotherapy source.
    Beach JL; McCullough EC
    Med Phys; 1975; 2(4):213-5. PubMed ID: 806776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Neutron therapy in the G.D.R. VII. radiation physical fundamentals of neutron therapy (author's transl)].
    Regel K
    Arch Geschwulstforsch; 1976; 46(4):276-80. PubMed ID: 823926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Letter: Recent advances in the development of a 14 MeV neutron generator suitable for radiotherapy.
    Brennan JT; Bloch P; Hendry GO; Hilton JL; Kim J; Quam WM
    Br J Radiol; 1974 Dec; 47(564):912-3. PubMed ID: 4215533
    [No Abstract]   [Full Text] [Related]  

  • 15. Measurement of the neutron leakage from a dedicated intraoperative radiation therapy electron linear accelerator and a conventional linear accelerator for 9, 12, 15(16), and 18(20) MeV electron energies.
    Jaradat AK; Biggs PJ
    Med Phys; 2008 May; 35(5):1711-7. PubMed ID: 18561646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast neutrons from a 25-MeV betatron.
    Fox JG; McAllister JD
    Med Phys; 1977; 4(5):387-96. PubMed ID: 409919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploration of Adiabatic Resonance Crossing Through Neutron Activator Design for Thermal and Epithermal Neutron Formation in (99)Mo Production and BNCT Applications.
    Khorshidi A
    Cancer Biother Radiopharm; 2015 Oct; 30(8):317-29. PubMed ID: 26397967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superheated drop detector for determination of neutron dose equivalent to patients undergoing high-energy x-ray and electron radiotherapy.
    Nath R; Meigooni AS; King CR; Smolen S; d'Errico F
    Med Phys; 1993; 20(3):781-7. PubMed ID: 8350837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Neutron therapy unit (15 MeV) in the University Radiology Clinic Hamburg-Eppendorf].
    Franke HD; Hess A
    Fortschr Geb Rontgenstr Nuklearmed; 1973; 0(0):suppl:357-9. PubMed ID: 4366700
    [No Abstract]   [Full Text] [Related]  

  • 20. Dose levels due to neutrons in the vicinity of high-energy medical accelerators.
    McGinley PH; Wood M; Mills M; Rodriguez R
    Med Phys; 1976; 3(6):397-402. PubMed ID: 826776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.