These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 10182117)

  • 1. Errors in flow and pressure related to the arterial filter purge line.
    Lee-Sensiba K; Azzaretto N; Carolina C; DiCarmine N; Hymowitz D; Kay S; Kooker K; Salogub M; Wong E; Tamari Y
    J Extra Corpor Technol; 1998 Jun; 30(2):77-82. PubMed ID: 10182117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Purge-Flow Rate on Microbubble Capture in Radial Arterial-Line Filters.
    Herbst DP
    J Extra Corpor Technol; 2016 Sep; 48(3):105-112. PubMed ID: 27729703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Stolen" blood flow: effect of an open arterial filter purge line in a simulated neonatal CPB model.
    Wang S; Miller A; Myers JL; Undar A
    ASAIO J; 2008; 54(4):432-5. PubMed ID: 18645363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the Quadrox-I neonatal oxygenator with an integrated arterial filter.
    Salavitabar A; Qiu F; Kunselman A; Ündar A
    Perfusion; 2010 Nov; 25(6):409-15. PubMed ID: 20699287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Handling ability of gaseous microemboli of two pediatric arterial filters in a simulated CPB model.
    Strother A; Wang S; Kunselman AR; Ündar A
    Perfusion; 2013 May; 28(3):244-52. PubMed ID: 23359037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential Blood Filtration for Extracorporeal Circulation: Initial Results from a Proof-of-Concept Prototype.
    Herbst DP
    J Extra Corpor Technol; 2014 Sep; 46(3):239-50. PubMed ID: 26357790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Micropore Filter Technology: Exploring the Blood Flow Path in Arterial-Line Filters and Its Effect on Bubble Trapping Functions.
    Herbst DP
    J Extra Corpor Technol; 2017 Mar; 49(1):44-48. PubMed ID: 28298665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the small caliber centrifugal blood pump.
    Miyazoe Y; Sawairi T; Ito K; Yana J
    Artif Organs; 1998 Jun; 22(6):461-5. PubMed ID: 9650666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closed circuit cardiopulmonary bypass with centrifugal pump for open-heart surgery: new trial for air removal.
    Morita M; Yozu R; Matayoshi T; Mitsumaru A; Shin H; Kawada S
    Artif Organs; 2000 Jun; 24(6):442-5. PubMed ID: 10886062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Balanced ultrafiltration: inflammatory mediator removal capacity.
    Guan Y; Wan C; Wang S; Sun P; Long C
    Artif Organs; 2012 Oct; 36(10):894-900. PubMed ID: 22817761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New roller pump disposable provides safety and simplifies occlusion setting.
    Lee-Sensiba K; Azzaretto N; Carolina C; DiCarmine N; Hymowitz D; Kay S; Kooker K; Salogub M; Wong E; Tamari Y
    J Extra Corpor Technol; 1997 Mar; 29(1):19-24. PubMed ID: 10166361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamic observation of plasma concentration of antimicrobial agents during balanced ultrafiltration in vitro.
    Fang Y; Guan Y; Wan C; Fu Z; Jiang J; Wu C; Zhao J; Sun P; Long C
    Artif Organs; 2014 Jan; 38(1):48-55. PubMed ID: 23865445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. To Purge or Not to Purge.
    Hugo JDV; Yeung A; Weerwind PW
    J Extra Corpor Technol; 2020 Mar; 52(1):22-26. PubMed ID: 32280141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gaseous microemboli detection in a simulated pediatric CPB circuit using a novel ultrasound system.
    Miller A; Wang S; Myers JL; Undar A
    ASAIO J; 2008; 54(5):504-8. PubMed ID: 18812742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The capability of trapping gaseous microemboli of two pediatric arterial filters with pulsatile and nonpulsatile flow in a simulated infant CPB model.
    Wang S; Win KN; Kunselman AR; Woitas K; Myers JL; Undar A
    ASAIO J; 2008; 54(5):519-22. PubMed ID: 18812745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evaluation of the filtration performance of paediatric breathing system filters at low flows.
    Malan CA; Wilkes AR; Hall JE; Gildersleve C
    Anaesthesia; 2007 May; 62(5):504-8. PubMed ID: 17448064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic modeling of the outlet of a pulsatile pump incorporating a flow-dependent resistance.
    Huang H; Yang M; Wu S; Liao H
    Med Eng Phys; 2013 Aug; 35(8):1097-104. PubMed ID: 23253954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy and safety of strategies to preserve stable extracorporeal life support flow during simulated hypovolemia.
    Simons AP; Lindelauf AA; Ganushchak YM; Maessen JG; Weerwind PW
    Perfusion; 2014 Jan; 29(1):18-24. PubMed ID: 23985423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of different filter positions and combinations in extracorporeal circulation.
    Krebber HJ; Hill JD; Osborn JJ; Iatridis A; Gerbode F
    Artif Organs; 1980 Aug; 4(3):167-70. PubMed ID: 7417029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Release of particulate matter from extracorporeal tubing: ineffectiveness of standard arterial line filters during bypass.
    Knopp EA; Baumann FG; Pratt D; Faden R; Catinella FP; Nathan IM; Adams PX; Cunningham JN; Spencer FC
    J Cardiovasc Surg (Torino); 1982; 23(6):470-6. PubMed ID: 7153235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.