These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 10187924)

  • 21. On the strain-stress state of the reconstructed middle ear after inserting a malleus-incus prosthesis.
    Mikhasev G; Ermochenko S; Bornitz M
    Math Med Biol; 2010 Dec; 27(4):289-312. PubMed ID: 19942607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of increased inner ear pressure on middle ear mechanics.
    Murakami S; Gyo K; Goode RL
    Otolaryngol Head Neck Surg; 1998 May; 118(5):703-8. PubMed ID: 9591878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Finite-element modeling of the normal and surgically repaired cat middle ear.
    Ladak HM; Funnell WR
    J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):933-44. PubMed ID: 8759947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A 3D-printed functioning anatomical human middle ear model.
    Kuru I; Maier H; Müller M; Lenarz T; Lueth TC
    Hear Res; 2016 Oct; 340():204-213. PubMed ID: 26772730
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Middle ear structure in the chinchilla: a quantitative study.
    Vrettakos PA; Dear SP; Saunders JC
    Am J Otolaryngol; 1988; 9(2):58-67. PubMed ID: 3400821
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of varying tympanic-membrane material properties on human middle-ear sound transmission in a three-dimensional finite-element model.
    O'Connor KN; Cai H; Puria S
    J Acoust Soc Am; 2017 Nov; 142(5):2836. PubMed ID: 29195482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Study of age-related changes in Middle ear transfer function.
    Zhou L; Shen N; Feng M; Liu H; Duan M; Huang X
    Comput Methods Biomech Biomed Engin; 2019 Oct; 22(13):1093-1102. PubMed ID: 31268350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Auditory systems of Heteromyidae: functional morphology and evolution of the middle ear.
    Webster DB; Webster M
    J Morphol; 1975 Jul; 146(3):343-76. PubMed ID: 1142444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comments on "Tympanic-membrane and malleus-incus-complex co-adaptations for high-frequency hearing in mammals", by Sunil Puria & Charles Steele.
    Mason MJ; Willi UB; Narins PM
    Hear Res; 2010 Aug; 267(1-2):1-3. PubMed ID: 20430077
    [No Abstract]   [Full Text] [Related]  

  • 30. Anatomic and morphometric examination of auditory ossicles in sheep.
    Kamaşak Arpaçay B; Yağmur B; Uğuz E; Çömlekçi E; Öncü R; Ulcay T; Aycan K
    Anat Histol Embryol; 2024 Jan; 53(1):e12998. PubMed ID: 37985461
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The natural vibration characteristics of human ossicles.
    Chou CF; Yu JF; Chen CK
    Chang Gung Med J; 2011; 34(2):160-5. PubMed ID: 21539757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The objective mobility test of the tympanic membrane-auditory ossicle chain by means of an electromagnetic probe (author's transl)].
    Cancura W
    Arch Otorhinolaryngol; 1978 Mar; 220(1-2):33-9. PubMed ID: 580575
    [No Abstract]   [Full Text] [Related]  

  • 33. Analysis of the mechano-acoustic influence of the tympanic cavity in the auditory system.
    Garcia-Gonzalez A; Castro-Egler C; Gonzalez-Herrera A
    Biomed Eng Online; 2016 Mar; 15():33. PubMed ID: 27029189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Finite element analysis of the transfer of sound in the myringosclerotic ear.
    Berdich K; Gentil F; Parente M; Garbe C; Santos C; Paço J; Natal Jorge RM; Martins P; Faur N
    Comput Methods Biomech Biomed Engin; 2016 Feb; 19(3):248-256. PubMed ID: 25693740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A preliminary investigation of four-dimensional ultrasound for evaluation of middle ear ossicles: an in vitro study.
    Propst EJ; Prager JD; Adams JM; Arjmand EM; Willging JP; Samy RN
    Int J Pediatr Otorhinolaryngol; 2010 Sep; 74(9):1028-33. PubMed ID: 20576298
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Finite element modelling of sound transmission from outer to inner ear.
    Areias B; Santos C; Natal Jorge RM; Gentil F; Parente MP
    Proc Inst Mech Eng H; 2016 Nov; 230(11):999-1007. PubMed ID: 27591576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studies on the mechanics of the normal human middle ear.
    Vlaming MS; Feenstra L
    Clin Otolaryngol Allied Sci; 1986 Oct; 11(5):353-63. PubMed ID: 3536194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finite-Element Modelling of the Response of the Gerbil Middle Ear to Sound.
    Maftoon N; Funnell WR; Daniel SJ; Decraemer WF
    J Assoc Res Otolaryngol; 2015 Oct; 16(5):547-67. PubMed ID: 26197870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sound transmission along the ossicular chain in common wild-type laboratory mice.
    Dong W; Varavva P; Olson ES
    Hear Res; 2013 Jul; 301():27-34. PubMed ID: 23183032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inaccuracies of deterministic finite-element models of human middle ear revealed by stochastic modelling.
    Ebrahimian A; Mohammadi H; Rosowski JJ; Cheng JT; Maftoon N
    Sci Rep; 2023 May; 13(1):7329. PubMed ID: 37147426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.