BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 10189095)

  • 1. Novel polyisobutylene/polydimethylsiloxane bicomponent networks: III. Tissue compatibility.
    Sherman MA; Kennedy JP; Ely DL; Smith D
    J Biomater Sci Polym Ed; 1999; 10(3):259-69. PubMed ID: 10189095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel biostable and biocompatible amphiphilic membranes.
    Jewrajka SK; Erdodi G; Kennedy JP; Ely D; Dunphy G; Boehme S; Popescu F
    J Biomed Mater Res A; 2008 Oct; 87(1):69-77. PubMed ID: 18085659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility properties of surface-modified poly(dimethylsiloxane) for urinary applications.
    Lippens E; De Smet N; Schauvliege S; Martens A; Gasthuys F; Schacht E; Cornelissen R
    J Biomater Appl; 2013 Feb; 27(6):651-60. PubMed ID: 22274880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhein and polydimethylsiloxane functionalized carbon/carbon composites as prosthetic implants for bone repair applications.
    Jia Z; Yang C; Jiao J; Li X; Zhu D; Yang Y; Yang J; Che Y; Lu Y; Feng X
    Biomed Mater; 2017 Jul; 12(4):045004. PubMed ID: 28425918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomedical application of commercial polymers and novel polyisobutylene-based thermoplastic elastomers for soft tissue replacement.
    Puskas JE; Chen Y
    Biomacromolecules; 2004; 5(4):1141-54. PubMed ID: 15244424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyisobutylene-toughened poly(methyl methacrylate): III. PMMA-l-PIB networks as bone cements.
    Kennedy JP; Askew MJ; Richard GC
    J Biomater Sci Polym Ed; 1993; 4(5):445-9. PubMed ID: 8241061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the biocompatibility of a coating material for an implantable bladder volume sensor.
    Kim SJ; Lee DS; Kim IG; Sohn DW; Park JY; Choi BK; Kim SW
    Kaohsiung J Med Sci; 2012 Mar; 28(3):123-9. PubMed ID: 22385604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased connective tissue attachment to silicone implants by a water vapor plasma treatment.
    Jensen C; Gurevich L; Patriciu A; Struijk JJ; Zachar V; Pennisi CP
    J Biomed Mater Res A; 2012 Dec; 100(12):3400-7. PubMed ID: 22767530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, characterization and ex vivo evaluation of polydimethylsiloxane polyurea-urethanes.
    Lim F; Yang CZ; Cooper SL
    Biomaterials; 1994 May; 15(6):408-16. PubMed ID: 8080930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo biocompatibility of three potential intraperitoneal implants.
    Defrère S; Mestagdt M; Riva R; Krier F; Van Langendonckt A; Drion P; Jérôme C; Evrard B; Dehoux JP; Foidart JM; Donnez J
    Macromol Biosci; 2011 Oct; 11(10):1336-45. PubMed ID: 21823236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel supramolecular elastomer films based on linear carboxyl-terminated polydimethylsiloxane oligomers: preparation, characterization, biocompatibility, and application in wound dressings.
    Zhang A; Deng W; Lin Y; Ye J; Dong Y; Lei Y; Chen H
    J Biomater Sci Polym Ed; 2014; 25(13):1346-61. PubMed ID: 25058670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bladder Augmentation Using Lyoplant
    Winde F; Backhaus K; Zeitler JA; Schlegel N; Meyer T
    Tissue Eng Regen Med; 2019 Dec; 16(6):645-652. PubMed ID: 31824826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hollow polydimethylsiloxane beads with a porous structure for cell encapsulation.
    Oh MJ; Ryu TK; Choi SW
    Macromol Rapid Commun; 2013 Nov; 34(21):1728-33. PubMed ID: 24123479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, permeability and biocompatibility of tricomponent membranes containing polyethylene glycol, polydimethylsiloxane and polypentamethylcyclopentasiloxane domains.
    Kurian P; Kasibhatla B; Daum J; Burns CA; Moosa M; Rosenthal KS; Kennedy JP
    Biomaterials; 2003 Sep; 24(20):3493-503. PubMed ID: 12809778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo biocompatibility of new nano-calcium-deficient hydroxyapatite/poly-amino acid complex biomaterials.
    Dai Z; Li Y; Lu W; Jiang D; Li H; Yan Y; Lv G; Yang A
    Int J Nanomedicine; 2015; 10():6303-16. PubMed ID: 26504382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytological evaluation of the tissue-implant reaction associated with subcutaneous implantation of polymers coated with titaniumcarboxonitride in vivo.
    Lehle K; Lohn S; Reinerth GG; Schubert T; Preuner JG; Birnbaum DE
    Biomaterials; 2004 Nov; 25(24):5457-66. PubMed ID: 15142726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue regenerating capacity of carbodiimide-crosslinked dermal sheep collagen during repair of the abdominal wall.
    van Wachem PB; van Luyn MJ; Olde Damink LH; Dijkstra PJ; Feijen J; Nieuwenhuis P
    Int J Artif Organs; 1994 Apr; 17(4):230-9. PubMed ID: 8070946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of polydimethylsiloxane surfaces using benzophenone.
    De Smet N; Rymarczyk-Machal M; Schacht E
    J Biomater Sci Polym Ed; 2009; 20(14):2039-53. PubMed ID: 19874676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical and physical modifications to poly(dimethylsiloxane) surfaces affect adhesion of Caco-2 cells.
    Wang L; Sun B; Ziemer KS; Barabino GA; Carrier RL
    J Biomed Mater Res A; 2010 Jun; 93(4):1260-71. PubMed ID: 19827104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual surface modification of PDMS-based silicone implants to suppress capsular contracture.
    Yoo BY; Kim BH; Lee JS; Shin BH; Kwon H; Koh WG; Heo CY
    Acta Biomater; 2018 Aug; 76():56-70. PubMed ID: 29908334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.