These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 10190173)

  • 1. Schistosoma mansoni sporocysts contain rhodoquinone and produce succinate by fumarate reduction.
    Van Hellemond JJ; Van Remoortere A; Tielens AG
    Parasitology; 1997 Aug; 115 ( Pt 2)():177-82. PubMed ID: 10190173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodoquinone and complex II of the electron transport chain in anaerobically functioning eukaryotes.
    Van Hellemond JJ; Klockiewicz M; Gaasenbeek CP; Roos MH; Tielens AG
    J Biol Chem; 1995 Dec; 270(52):31065-70. PubMed ID: 8537365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The facultative anaerobic energy metabolism of Schistosoma mansoni sporocysts.
    Tielens AG; Horemans AM; Dunnewijk R; van der Meer P; van den Bergh SG
    Mol Biochem Parasitol; 1992 Nov; 56(1):49-57. PubMed ID: 1475001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of catalytic activity and inhibitors of quinone reactions of succinate dehydrogenase (Succinate-ubiquinone oxidoreductase) and fumarate reductase (Menaquinol-fumarate oxidoreductase) from Escherichia coli.
    Maklashina E; Cecchini G
    Arch Biochem Biophys; 1999 Sep; 369(2):223-32. PubMed ID: 10486141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic characterization of a single bifunctional enzyme for fumarate reduction and succinate oxidation in Geobacter sulfurreducens and engineering of fumarate reduction in Geobacter metallireducens.
    Butler JE; Glaven RH; Esteve-Núñez A; Núñez C; Shelobolina ES; Bond DR; Lovley DR
    J Bacteriol; 2006 Jan; 188(2):450-5. PubMed ID: 16385034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The electron transport chain in anaerobically functioning eukaryotes.
    Tielens AG; Van Hellemond JJ
    Biochim Biophys Acta; 1998 Jun; 1365(1-2):71-8. PubMed ID: 9693724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory complex II: ROS production and the kinetics of ubiquinone reduction.
    Grivennikova VG; Kozlovsky VS; Vinogradov AD
    Biochim Biophys Acta Bioenerg; 2017 Feb; 1858(2):109-117. PubMed ID: 27810396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodoquinone is synthesized de novo by Fasciola hepatica.
    Van Hellemond JJ; Luijten M; Flesch FM; Gaasenbeek CP; Tielens AG
    Mol Biochem Parasitol; 1996 Nov; 82(2):217-26. PubMed ID: 8946387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible electrochemistry of fumarate reductase immobilized on an electrode surface. Direct voltammetric observations of redox centers and their participation in rapid catalytic electron transport.
    Sucheta A; Cammack R; Weiner J; Armstrong FA
    Biochemistry; 1993 May; 32(20):5455-65. PubMed ID: 8499449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of Fumarate to Succinate Mediated by Fusobacterium varium.
    McDonald NC; White RL
    Appl Biochem Biotechnol; 2019 Jan; 187(1):163-175. PubMed ID: 29911265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free-living nematodes Caenorhabditis elegans possess in their mitochondria an additional rhodoquinone, an essential component of the eukaryotic fumarate reductase system.
    Takamiya S; Matsui T; Taka H; Murayama K; Matsuda M; Aoki T
    Arch Biochem Biophys; 1999 Nov; 371(2):284-9. PubMed ID: 10545216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spectrophotometric coupled enzyme assay to measure the activity of succinate dehydrogenase.
    Jones AJ; Hirst J
    Anal Biochem; 2013 Nov; 442(1):19-23. PubMed ID: 23886887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the fumarate metabolism of the syntrophic propionate-oxidizing bacterium strain MPOB.
    Van Kuijk BL; Schlösser E; Stams AJ
    Arch Microbiol; 1998 Apr; 169(4):346-52. PubMed ID: 9531636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of fumarate reductases and succinate dehydrogenases based upon their contrasting behaviour in the reduced benzylviologen/fumarate assay.
    Ackrell BA; Armstrong FA; Cochran B; Sucheta A; Yu T
    FEBS Lett; 1993 Jul; 326(1-3):92-4. PubMed ID: 8325393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Succinate dehydrogenase functioning by a reverse redox loop mechanism and fumarate reductase in sulphate-reducing bacteria.
    Zaunmüller T; Kelly DJ; Glöckner FO; Unden G
    Microbiology (Reading); 2006 Aug; 152(Pt 8):2443-2453. PubMed ID: 16849807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological role of rhodoquinone in Euglena gracilis mitochondria.
    Castro-Guerrero NA; Jasso-Chávez R; Moreno-Sánchez R
    Biochim Biophys Acta; 2005 Dec; 1710(2-3):113-21. PubMed ID: 16325648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the respiratory chain of Helicobacter pylori.
    Chen M; Andersen LP; Zhai L; Kharazmi A
    FEMS Immunol Med Microbiol; 1999 Jun; 24(2):169-74. PubMed ID: 10378416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Succinate:quinone oxidoreductases from epsilon-proteobacteria.
    Lancaster CR; Simon J
    Biochim Biophys Acta; 2002 Jan; 1553(1-2):84-101. PubMed ID: 11803019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Schistosoma mansoni does not and cannot oxidise fatty acids, but these are used for biosynthetic purposes instead.
    Bexkens ML; Mebius MM; Houweling M; Brouwers JF; Tielens AGM; van Hellemond JJ
    Int J Parasitol; 2019 Jul; 49(8):647-656. PubMed ID: 31170410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fumarate reductase activity of bovine heart succinate-ubiquinone reductase. New assay system and overall properties of the reaction.
    Grivennikova VG; Gavrikova EV; Timoshin AA; Vinogradov AD
    Biochim Biophys Acta; 1993 Jan; 1140(3):282-92. PubMed ID: 8417779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.