These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10190768)

  • 21. Effects of chronic dietary selenomethionine exposure on repeat swimming performance, aerobic metabolism and methionine catabolism in adult zebrafish (Danio rerio).
    Thomas JK; Wiseman S; Giesy JP; Janz DM
    Aquat Toxicol; 2013 Apr; 130-131():112-22. PubMed ID: 23399444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lactate concentrations after short, maximal exercise at various glycogen levels.
    Jacobs I
    Acta Physiol Scand; 1981 Apr; 111(4):465-9. PubMed ID: 7304208
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical and metabolic responses with exercise and dietary carbohydrate manipulation.
    Green HJ; Ball-Burnett M; Jones S; Farrance B
    Med Sci Sports Exerc; 2007 Jan; 39(1):139-48. PubMed ID: 17218896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Postexercise physiology and repeat performance behaviour of free-swimming smallmouth bass in an experimental raceway.
    Peake SJ; Farrell AP
    Physiol Biochem Zool; 2005; 78(5):801-7. PubMed ID: 16047291
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of metabolic genes in human skeletal muscle by short-term exercise and diet manipulation.
    Arkinstall MJ; Tunstall RJ; Cameron-Smith D; Hawley JA
    Am J Physiol Endocrinol Metab; 2004 Jul; 287(1):E25-31. PubMed ID: 14761878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of taper on swim power, stroke distance, and performance.
    Johns RA; Houmard JA; Kobe RW; Hortobágyi T; Bruno NJ; Wells JM; Shinebarger MH
    Med Sci Sports Exerc; 1992 Oct; 24(10):1141-6. PubMed ID: 1435162
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The freely-chosen swimming stroke rate in a maximal swim and on a biokinetic swim bench.
    Swaine I; Reilly T
    Med Sci Sports Exerc; 1983; 15(5):370-5. PubMed ID: 6645864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbohydrate intake and multiple sprint sports: with special reference to football (soccer).
    Balsom PD; Wood K; Olsson P; Ekblom B
    Int J Sports Med; 1999 Jan; 20(1):48-52. PubMed ID: 10090462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glycaemic control, muscle glycogen and exercise performance in IDDM athletes on diets of varying carbohydrate content.
    McKewen MW; Rehrer NJ; Cox C; Mann J
    Int J Sports Med; 1999 Aug; 20(6):349-53. PubMed ID: 10496112
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic and sarcoplasmic reticulum Ca2+ cycling responses in human muscle 4 days following prolonged exercise.
    Duhamel TA; Green HJ; Perco JG; Ouyang J
    Can J Physiol Pharmacol; 2005 Jul; 83(7):643-55. PubMed ID: 16091790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of high- and low-intensity warm-up on the physiological responses to a standardized swim and tethered swimming performance.
    Mitchell JB; Huston JS
    J Sports Sci; 1993 Apr; 11(2):159-65. PubMed ID: 8497018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relationship between swimming velocity and lactic concentration during continuous and intermittent training exercises.
    Olbrecht J; Madsen O; Mader A; Liesen H; Hollmann W
    Int J Sports Med; 1985 Apr; 6(2):74-7. PubMed ID: 4008143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of acute creatine loading with or without carbohydrate on repeated bouts of maximal swimming in high-performance swimmers.
    Theodorou AS; Havenetidis K; Zanker CL; O'Hara JP; King RF; Hood C; Paradisis G; Cooke CB
    J Strength Cond Res; 2005 May; 19(2):265-9. PubMed ID: 15903360
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glucose response after a ten-week training in swimming.
    Sengoku Y; Nakamura K; Takeda T; Nabekura Y; Tsubakimoto S
    Int J Sports Med; 2011 Nov; 32(11):835-8. PubMed ID: 21989670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Blood lactate response and critical speed in swimmers aged 10-12 years of different standards.
    Denadai BS; Greco CC; Teixeira M
    J Sports Sci; 2000 Oct; 18(10):779-84. PubMed ID: 11055813
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of maximal oxygen uptakes from the tethered, the 183- and 457-meter unimpeded supramaximal freestyle swims.
    Rinehardt KF; Kraemer RR; Gormely S; Colan S
    Int J Sports Med; 1991 Feb; 12(1):6-9. PubMed ID: 2030062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of blood lactate clearance following maximal swimming. Effect of velocity of recovery swimming.
    McMaster WC; Stoddard T; Duncan W
    Am J Sports Med; 1989; 17(4):472-7. PubMed ID: 2782530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does critical swimming velocity represent exercise intensity at maximal lactate steady state?
    Wakayoshi K; Yoshida T; Udo M; Harada T; Moritani T; Mutoh Y; Miyashita M
    Eur J Appl Physiol Occup Physiol; 1993; 66(1):90-5. PubMed ID: 8425518
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of swim training on energetics and performance.
    Costa MJ; Bragada JA; Mejias JE; Louro H; Marinho DA; Silva AJ; Barbosa TM
    Int J Sports Med; 2013 Jun; 34(6):507-13. PubMed ID: 23180214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of swim recovery and muscle stimulation on lactate removal after sprint swimming.
    Neric FB; Beam WC; Brown LE; Wiersma LD
    J Strength Cond Res; 2009 Dec; 23(9):2560-7. PubMed ID: 19910818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.