BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 10191359)

  • 1. Comparison of amphibian and human ClC-5: similarity of functional properties and inhibition by external pH.
    Mo L; Hellmich HL; Fong P; Wood T; Embesi J; Wills NK
    J Membr Biol; 1999 Apr; 168(3):253-64. PubMed ID: 10191359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the putative chloride channel xClC-5 expressed in Xenopus laevis oocytes and comparison with endogenous chloride currents.
    Schmieder S; Lindenthal S; Banderali U; Ehrenfeld J
    J Physiol; 1998 Sep; 511 ( Pt 2)(Pt 2):379-93. PubMed ID: 9706017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and regulation of ClC-5 chloride channels: effects of antisense and oxidants.
    Weng TX; Mo L; Hellmich HL; Yu AS; Wood T; Wills NK
    Am J Physiol Cell Physiol; 2001 Jun; 280(6):C1511-20. PubMed ID: 11350746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and functional expression of a ClC Cl- channel from the renal cell line A6.
    Lindenthal S; Schmieder S; Ehrenfeld J; Wills NK
    Am J Physiol; 1997 Oct; 273(4):C1176-85. PubMed ID: 9357761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and targeting to the plasma membrane of xClC-K, a chloride channel specifically expressed in distinct tubule segments of Xenopus laevis kidney.
    Maulet Y; Lambert RC; Mykita S; Mouton J; Partisani M; Bailly Y; Bombarde G; Feltz A
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):737-43. PubMed ID: 10359659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of an acid-activated Cl(-) channel from human skeletal muscles.
    Kawasaki M; Fukuma T; Yamauchi K; Sakamoto H; Marumo F; Sasaki S
    Am J Physiol; 1999 Nov; 277(5):C948-54. PubMed ID: 10564087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pure chloride channel mutant of CLC-5 causes Dent's disease via insufficient V-ATPase activation.
    Satoh N; Yamada H; Yamazaki O; Suzuki M; Nakamura M; Suzuki A; Ashida A; Yamamoto D; Kaku Y; Sekine T; Seki G; Horita S
    Pflugers Arch; 2016 Jul; 468(7):1183-1196. PubMed ID: 27044412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloride channel expression in cultured human fetal RPE cells: response to oxidative stress.
    Wills NK; Weng T; Mo L; Hellmich HL; Yu A; Wang T; Buchheit S; Godley BF
    Invest Ophthalmol Vis Sci; 2000 Dec; 41(13):4247-55. PubMed ID: 11095622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-glycosylation of the Xenopus laevis ClC-5 protein plays a role in cell surface expression, affecting transport activity at the plasma membrane.
    Schmieder S; Bogliolo S; Ehrenfeld J
    J Cell Physiol; 2007 Feb; 210(2):479-88. PubMed ID: 17111367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of the three members of the CLC family of anion transport proteins in Trypanosoma brucei.
    Steinmann ME; Schmidt RS; Macêdo JP; Kunz Renggli C; Bütikofer P; Rentsch D; Mäser P; Sigel E
    PLoS One; 2017; 12(12):e0188219. PubMed ID: 29244877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the human pH- and PKA-activated ClC-2G(2 alpha) Cl- channel.
    Sherry AM; Stroffekova K; Knapp LM; Kupert EY; Cuppoletti J; Malinowska DH
    Am J Physiol; 1997 Aug; 273(2 Pt 1):C384-93. PubMed ID: 9277336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between intracellular pH and chloride in Xenopus oocytes expressing the chloride channel ClC-0.
    Cooper GJ; Fong P
    Am J Physiol Cell Physiol; 2003 Feb; 284(2):C331-8. PubMed ID: 12388074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ClC-2 chloride channels contribute to HTC cell volume homeostasis.
    Roman RM; Smith RL; Feranchak AP; Clayton GH; Doctor RB; Fitz JG
    Am J Physiol Gastrointest Liver Physiol; 2001 Mar; 280(3):G344-53. PubMed ID: 11171616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The chloride channel ClC-2 contributes to the inwardly rectifying Cl- conductance in cultured porcine choroid plexus epithelial cells.
    Kajita H; Omori K; Matsuda H
    J Physiol; 2000 Mar; 523 Pt 2(Pt 2):313-24. PubMed ID: 10699077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of an outward rectifying chloride current of Xenopus tropicalis oocytes.
    Ochoa-de la Paz LD; Espino-Saldaña AE; Arellano-Ostoa R; Reyes JP; Miledi R; Martinez-Torres A
    Biochim Biophys Acta; 2013 Aug; 1828(8):1743-53. PubMed ID: 23524227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characterization of recombinant human ClC-4 chloride channels in cultured mammalian cells.
    Vanoye CG; George AL
    J Physiol; 2002 Mar; 539(Pt 2):373-83. PubMed ID: 11882671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ClC-3 is a candidate of the channel proteins mediating acid-activated chloride currents in nasopharyngeal carcinoma cells.
    Wang L; Ma W; Zhu L; Ye D; Li Y; Liu S; Li H; Zuo W; Li B; Ye W; Chen L
    Am J Physiol Cell Physiol; 2012 Jul; 303(1):C14-23. PubMed ID: 22496242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5.
    Picollo A; Pusch M
    Nature; 2005 Jul; 436(7049):420-3. PubMed ID: 16034421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional and structural analysis of ClC-K chloride channels involved in renal disease.
    Waldegger S; Jentsch TJ
    J Biol Chem; 2000 Aug; 275(32):24527-33. PubMed ID: 10831588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of SLC26A9, facilitation of Cl(-) transport by bicarbonate.
    Loriol C; Dulong S; Avella M; Gabillat N; Boulukos K; Borgese F; Ehrenfeld J
    Cell Physiol Biochem; 2008; 22(1-4):15-30. PubMed ID: 18769029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.