These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 10191370)

  • 1. Temporal-spatial feature of gait after traumatic brain injury.
    Ochi F; Esquenazi A; Hirai B; Talaty M
    J Head Trauma Rehabil; 1999 Apr; 14(2):105-15. PubMed ID: 10191370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of gait analysis for surgical recommendations in traumatic brain injury.
    Perry J
    J Head Trauma Rehabil; 1999 Apr; 14(2):116-35. PubMed ID: 10191371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An algorithm to assess stiff-legged gait in traumatic brain injury.
    Kerrigan DC; Bang MS; Burke DT
    J Head Trauma Rehabil; 1999 Apr; 14(2):136-45. PubMed ID: 10191372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporospatial characteristics of gait in patients with lower limb muscle hypertonia after traumatic brain injury.
    Chow JW; Yablon SA; Horn TS; Stokic DS
    Brain Inj; 2010; 24(13-14):1575-84. PubMed ID: 20973631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromyogram-lengthening velocity relation in plantar flexors during stance phase of gait in patients with hypertonia after acquired brain injury.
    Chow JW; Yablon SA; Stokic DS
    Arch Phys Med Rehabil; 2012 Dec; 93(12):2287-94. PubMed ID: 22465583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of gait impairment in mice subjected to craniotomy and traumatic brain injury.
    Sashindranath M; Daglas M; Medcalf RL
    Behav Brain Res; 2015 Jun; 286():33-8. PubMed ID: 25721743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of gait disorders following traumatic brain injury.
    Williams G; Lai D; Schache A; Morris ME
    J Head Trauma Rehabil; 2015; 30(2):E13-23. PubMed ID: 24695264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematic changes following botulinum toxin injection after traumatic brain injury.
    Wilson DJ; Childers MK; Cooke DL; Smith BK
    Brain Inj; 1997 Mar; 11(3):157-67. PubMed ID: 9057998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coactivation of ankle muscles during stance phase of gait in patients with lower limb hypertonia after acquired brain injury.
    Chow JW; Yablon SA; Stokic DS
    Clin Neurophysiol; 2012 Aug; 123(8):1599-605. PubMed ID: 22325644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing gait impairment following experimental traumatic brain injury in mice.
    Neumann M; Wang Y; Kim S; Hong SM; Jeng L; Bilgen M; Liu J
    J Neurosci Methods; 2009 Jan; 176(1):34-44. PubMed ID: 18805438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in gait patterns induced by rhythmic auditory stimulation for adolescents with acquired brain injury.
    Kim SJ; Shin YK; Yoo GE; Chong HJ; Cho SR
    Ann N Y Acad Sci; 2016 Dec; 1385(1):53-62. PubMed ID: 27918630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The distribution of positive work and power generation amongst the lower-limb joints during walking normalises following recovery from traumatic brain injury.
    Williams G; Schache AG
    Gait Posture; 2016 Jan; 43():265-9. PubMed ID: 26531767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The immediate effect of treadmill walking on step variability in boys with a history of severe traumatic brain injury and typically-developed controls.
    Katz-Leurer M; Rotem H; Keren O; Meyer S
    Dev Neurorehabil; 2010; 13(3):170-4. PubMed ID: 20450466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecological validity of walking speed assessment after traumatic brain injury: a pilot study.
    Moseley AM; Lanzarone S; Bosman JM; van Loo MA; de Bie RA; Hassett L; Caplan B
    J Head Trauma Rehabil; 2004; 19(4):341-8. PubMed ID: 15263861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Associations between Muscle Strength Asymmetry and Impairments in Gait and Posture in Young Brain-Injured Patients.
    Drijkoningen D; Caeyenberghs K; Vander Linden C; Van Herpe K; Duysens J; Swinnen SP
    J Neurotrauma; 2015 Sep; 32(17):1324-32. PubMed ID: 25738975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decomposition of leg movements during overground walking in individuals with traumatic brain injury.
    Austin HM; Balendra N; Langenderfer JE; Ustinova KI
    Brain Inj; 2018; 32(6):739-746. PubMed ID: 29494269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the Dual AFO on gait parameters in stroke patients.
    Hwang YI; An DH; Yoo WG
    NeuroRehabilitation; 2012; 31(4):387-93. PubMed ID: 23232162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of variable gait modes on walking parameters among children post severe traumatic brain injury and typically developed controls.
    Katz-Leurer M; Rotem H; Keren O; Meyer S
    NeuroRehabilitation; 2011; 29(1):45-51. PubMed ID: 21876295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in gait variability during different challenges to mobility in patients with traumatic brain injury.
    Niechwiej-Szwedo E; Inness EL; Howe JA; Jaglal S; McIlroy WE; Verrier MC
    Gait Posture; 2007 Jan; 25(1):70-7. PubMed ID: 16490355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of concurrent cognitive tasks on gait features among children post-severe traumatic brain injury and typically-developed controls.
    Katz-Leurer M; Rotem H; Keren O; Meyer S
    Brain Inj; 2011; 25(6):581-6. PubMed ID: 21534735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.