These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 1019232)
21. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system. Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412 [TBL] [Abstract][Full Text] [Related]
22. The isocentric fast neutron therapy facility at Edinburgh. Bonnett DE; Williams JR; Parnell CJ Br J Radiol; 1980 Jan; 53(625):12-20. PubMed ID: 6766336 [TBL] [Abstract][Full Text] [Related]
23. Thick beryllium target as an epithermal neutron source for neutron capture therapy. Wang CK; Moore BR Med Phys; 1994 Oct; 21(10):1633-8. PubMed ID: 7869996 [TBL] [Abstract][Full Text] [Related]
24. Direction distribution of ambient neutron dose equivalent from 20 MeV protons incident on thick Be and Cu targets. Sunil C; Shanbhag AA; Nandy M; Maiti M; Bandyopadhyay T; Sarkar PK Radiat Prot Dosimetry; 2009 Sep; 136(2):67-73. PubMed ID: 19700498 [TBL] [Abstract][Full Text] [Related]
25. Fast neutron yields and spectra from targets of varying atomic number bombarded with deuterons from 16 to 50 MeV. Meulders JP; Leleux P; Macq PC; Pirart C Phys Med Biol; 1975 Mar; 20(2):235-43. PubMed ID: 1153513 [TBL] [Abstract][Full Text] [Related]
26. Measurements of the neutron yields from 7Li(p,n)7Be reaction (thick target) with incident energies from 1.885 to 2.0 MeV. Yu W; Yue G; Han X; Chen J; Tian B Med Phys; 1998 Jul; 25(7 Pt 1):1222-4. PubMed ID: 9682210 [TBL] [Abstract][Full Text] [Related]
27. Modification of the University of Washington Neutron Radiotherapy Facility for optimization of neutron capture enhanced fast-neutron therapy. Nigg DW; Wemple CA; Risler R; Hartwell JK; Harker YD; Laramore GE Med Phys; 2000 Feb; 27(2):359-67. PubMed ID: 10718140 [TBL] [Abstract][Full Text] [Related]
28. Neutron energy spectra from the laser-induced Dd,n3He reaction. Hilscher D; Berndt O; Enke M; Jahnke U; Nickles PV; Ruhl H; Sandner W Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016414. PubMed ID: 11461417 [TBL] [Abstract][Full Text] [Related]
29. A consistent set of neutron kerma coefficients from thermal to 150 MeV for biologically important materials. Chadwick MB; Barschall HH; Caswell RS; DeLuca PM; Hale GM; Jones DT; MacFarlane RE; Meulders JP; Schuhmacher H; Schrewe UJ; Wambersie A; Young PG Med Phys; 1999 Jun; 26(6):974-91. PubMed ID: 10436900 [TBL] [Abstract][Full Text] [Related]
30. Monte Carlo simulation of fast neutron spectra: mean lineal energy estimation with an effectiveness function and correlation to RBE. Pignol J; Slabbert J; Binns P Int J Radiat Oncol Biol Phys; 2001 Jan; 49(1):251-60. PubMed ID: 11163522 [TBL] [Abstract][Full Text] [Related]
31. Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick ⁹Be target and estimation of neutron yields. Paul S; Sahoo GS; Tripathy SP; Sharma SC; Ramjilal ; Ninawe NG; Sunil C; Gupta AK; Bandyopadhyay T Rev Sci Instrum; 2014 Jun; 85(6):063501. PubMed ID: 24985813 [TBL] [Abstract][Full Text] [Related]
32. Attenuation measurements of a fast neutron radiotherapy beam. Attix FH; Theus RB; Miller GE Phys Med Biol; 1976 Jul; 21(4):530-43. PubMed ID: 972919 [TBL] [Abstract][Full Text] [Related]
33. Explosion characteristics of intense femtosecond-laser-driven water droplets. Schnürer M; Hilscher D; Jahnke U; Ter-Avetisyan S; Busch S; Kalachnikov M; Stiel H; Nickles PV; Sandner W Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056401. PubMed ID: 15600759 [TBL] [Abstract][Full Text] [Related]
34. [Principle of neutron teletherapy with the Soviet U-120 cyclotron]. Letov VN; Bel'skiĭ EM; Ievlev SM; Komov AI; Protasevich ET Med Radiol (Mosk); 1987 Jun; 32(6):27-33. PubMed ID: 3110536 [TBL] [Abstract][Full Text] [Related]
35. Performance of a gas target neutron source for radiotherapy. Deluca PM; Torti RP; Chenevert GM; Detorie NA; Tesmer JR; Kelsey CA Phys Med Biol; 1978 Sep; 23(5):876-87. PubMed ID: 715003 [TBL] [Abstract][Full Text] [Related]
36. A comparison of the potential therapeutic gain of p(66)/Be neutrons and d(14)/Be neutrons. Slabbert JP; Theron T; Zolzer F; Streffer C; Bohm L Int J Radiat Oncol Biol Phys; 2000 Jul; 47(4):1059-65. PubMed ID: 10863079 [TBL] [Abstract][Full Text] [Related]
37. Study of boron neutron capture therapy used neutron source with protons bombarding a thick 9Be target. Yue G; Chen J; Song R Med Phys; 1997 Jun; 24(6):851-5. PubMed ID: 9198018 [TBL] [Abstract][Full Text] [Related]
38. Dosimetric properties of neutron beams produced by 16-60 MeV deuterons on beryllium. Almond PR; Smathers JB; Oliver GD; Hranitzky EB; Routt K Radiat Res; 1973 Apr; 54(1):24-34. PubMed ID: 4699794 [No Abstract] [Full Text] [Related]