These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10192898)

  • 1. Influence of selected physical parameters on the biodegradation of acrylamide by immobilized cells of Rhodococcus sp.
    Nawaz MS; Billedeau SM; Cerniglia CE
    Biodegradation; 1998; 9(5):381-7. PubMed ID: 10192898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of an amidase from an acrylamide-degrading Rhodococcus sp.
    Nawaz MS; Khan AA; Seng JE; Leakey JE; Siitonen PH; Cerniglia CE
    Appl Environ Microbiol; 1994 Sep; 60(9):3343-8. PubMed ID: 7944367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1,4-Dioxane degradation characteristics of Rhodococcus aetherivorans JCM 14343.
    Inoue D; Tsunoda T; Yamamoto N; Ike M; Sei K
    Biodegradation; 2018 Jun; 29(3):301-310. PubMed ID: 29696449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of acrylamide production by Rhodococcus rhodochrous (RS-6) cells immobilized in agar matrix.
    Sahu R; Meghavarnam AK; Janakiraman S
    J Appl Microbiol; 2022 Mar; 132(3):1978-1989. PubMed ID: 34564923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioconversion of acrylonitrile to acrylamide using polyacrylamide entrapped cells of Rhodococcus rhodochrous PA-34.
    Raj J; Prasad S; Sharma NN; Bhalla TC
    Folia Microbiol (Praha); 2010 Sep; 55(5):442-6. PubMed ID: 20941578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Characterization of phenol-degrading Rhodococcus sp. strain P1 from coking wastewater].
    Zhang Y; Meng X; Chai T
    Wei Sheng Wu Xue Bao; 2013 Oct; 53(10):1117-24. PubMed ID: 24409768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aliphatic amidase of Rhodococcus rhodochrous PA-34: Purification, characterization and application in synthesis of acrylic acid.
    Thakur N; Kumar V; Sharma NK; Thakur S; Bhalla TC
    Protein Pept Lett; 2016; 23(2):152-8. PubMed ID: 26667322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil.
    Shen J; Zhang J; Zuo Y; Wang L; Sun X; Li J; Han W; He R
    J Hazard Mater; 2009 Apr; 163(2-3):1199-206. PubMed ID: 18762376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of acrylamide degradation potential of Pseudomonas aeruginosa BAC-6 isolated from industrial effluent.
    Chandrashekar V; Chandrashekar C; Shivakumar R; Bhattacharya S; Das A; Gouda B; Rajan SS
    Appl Biochem Biotechnol; 2014 Jul; 173(5):1135-44. PubMed ID: 24771288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of Rhodococcus sp. NB5 capable of degrading a high concentration of nitrobenzene.
    Lin H; Chen XJ; Ding HT; Jia XM; Zhao YH
    J Basic Microbiol; 2011 Aug; 51(4):397-403. PubMed ID: 21298674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolite Cross-Feeding between Rhodococcus ruber YYL and Bacillus cereus MLY1 in the Biodegradation of Tetrahydrofuran under pH Stress.
    Liu Z; Huang H; Qi M; Wang X; Adebanjo OO; Lu Z
    Appl Environ Microbiol; 2019 Oct; 85(19):. PubMed ID: 31375492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oil-degrading properties of a psychrotolerant bacterial strain, Rhodococcus sp. Y2-2, in liquid and soil media.
    Van Hong Thi Pham ; Chaudhary DK; Jeong SW; Kim J
    World J Microbiol Biotechnol; 2018 Feb; 34(2):33. PubMed ID: 29411146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of acrylamide by immobilized cells of a Pseudomonas sp. and Xanthomonas maltophilia.
    Nawaz MS; Franklin W; Cerniglia CE
    Can J Microbiol; 1993 Feb; 39(2):207-12. PubMed ID: 8467421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of an acrylamide-degrading Antarctic bacterium.
    Shukor MY; Gusmanizar N; Ramli J; Shamaan NA; MacCormack WP; Syed MA
    J Environ Biol; 2009 Jan; 30(1):107-12. PubMed ID: 20112871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodococcus sp. F92 immobilized on polyurethane foam shows ability to degrade various petroleum products.
    Quek E; Ting YP; Tan HM
    Bioresour Technol; 2006 Jan; 97(1):32-8. PubMed ID: 16154500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of acrylamide by a novel isolate, Cupriavidus oxalaticus ICTDB921: Identification and characterization of the acrylamidase produced.
    Bedade DK; Singhal RS
    Bioresour Technol; 2018 Aug; 261():122-132. PubMed ID: 29656225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acrylamide synthesis using agar entrapped cells of Rhodococcus rhodochrous PA-34 in a partitioned fed batch reactor.
    Raj J; Sharma NN; Prasad S; Bhalla TC
    J Ind Microbiol Biotechnol; 2008 Jan; 35(1):35-40. PubMed ID: 17994258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of quinoline by Rhodococcus sp. QL2 isolated from activated sludge.
    Zhu SN; Liu DQ; Fan L; Ni JR
    J Hazard Mater; 2008 Dec; 160(2-3):289-94. PubMed ID: 18420344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced cyanide biodegradation by immobilized crude extract of Rhodococcus UKMP-5M.
    Maniyam MN; Ibrahim AL; Cass AEG
    Environ Technol; 2019 Jan; 40(3):386-398. PubMed ID: 29032742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and primary characterization of an amidase from Rhodococcus rhodochrous.
    Kotlova EK; Chestukhina GG; Astaurova OB; Leonova TE; Yanenko AS; Debabov VG
    Biochemistry (Mosc); 1999 Apr; 64(4):384-9. PubMed ID: 10231590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.