BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10192945)

  • 1. Response-surface analyses for toxicity to Tetrahymena pyriformis: reactive carbonyl-containing aliphatic chemicals.
    Schultz TW; Cronin MT
    J Chem Inf Comput Sci; 1999; 39(2):304-9. PubMed ID: 10192945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing, alpha,beta-unsaturated chemicals.
    Schultz TW; Netzeva TI; Roberts DW; Cronin MT
    Chem Res Toxicol; 2005 Feb; 18(2):330-41. PubMed ID: 15720140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-toxicity relationships for aliphatic chemicals evaluated with Tetrahymena pyriformis.
    Schultz TW; Cronin MT; Netzeva TI; Aptula AO
    Chem Res Toxicol; 2002 Dec; 15(12):1602-9. PubMed ID: 12482243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-activity relationships for aquatic toxicity to Tetrahymena: halogen-substituted aliphatic esters.
    DeWeese AD; Schultz TW
    Environ Toxicol; 2001; 16(1):54-60. PubMed ID: 11345545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSAR analyses of the toxicity of aliphatic carboxylic acids and salts to Tetrahymena pyriformis.
    Seward JR; Schultz TW
    SAR QSAR Environ Res; 1999 Dec; 10(6):557-67. PubMed ID: 10674293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abiotic sulfhydryl reactivity: a predictor of aquatic toxicity for carbonyl-containing alpha,beta-unsaturated compounds.
    Yarbrough JW; Schultz TW
    Chem Res Toxicol; 2007 Mar; 20(3):558-62. PubMed ID: 17319700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-toxicity relationships for three mechanisms of action of toxicity to Vibrio fischeri.
    Cronin MT; Schultz TW
    Ecotoxicol Environ Saf; 1998 Jan; 39(1):65-9. PubMed ID: 9515077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative structure-activity analyses of nitrobenzene toxicity to Tetrahymena pyriformis.
    Cronin MT; Gregory BW; Schultz TW
    Chem Res Toxicol; 1998 Aug; 11(8):902-8. PubMed ID: 9705752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSARs for selected aliphatic and aromatic amines.
    Schultz TW; Wilke TS; Bryant SE; Hosein LM
    Sci Total Environ; 1991 Dec; 109-110():581-7. PubMed ID: 1815376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-toxicity relationships for alkanones and alkenones.
    Schultz TW; Sinks GD; Hunter RS
    SAR QSAR Environ Res; 1995; 3(1):27-36. PubMed ID: 7497340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-toxicity analyses of Tetrahymena pyriformis exposed to pyridines -- an examination into extension of surface-response domains.
    Seward JR; Cronin MT; Schultz TW
    SAR QSAR Environ Res; 2001 Feb; 11(5-6):489-512. PubMed ID: 11328716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSARs for monosubstituted anilines eliciting the polar narcosis mechanism of action.
    Schultz TW; Lin DT; Arnold LM
    Sci Total Environ; 1991 Dec; 109-110():569-80. PubMed ID: 1815375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation of Tetrahymena and Pimephales toxicity: evaluation of 100 additional compounds.
    Sinks GD; Schultz TW
    Environ Toxicol Chem; 2001 Apr; 20(4):917-21. PubMed ID: 11345470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a computational model for Michael addition reactivity in the prediction of toxicity to Tetrahymena pyriformis.
    Schwöbel JA; Madden JC; Cronin MT
    Chemosphere; 2011 Oct; 85(6):1066-74. PubMed ID: 21890172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial least squares modelling of the acute toxicity of aliphatic compounds to Tetrahymena pyriformis.
    Netzeva TI; Schultz TW; Aptula AO; Cronin MT
    SAR QSAR Environ Res; 2003 Aug; 14(4):265-83. PubMed ID: 14506870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrimination of excess toxicity from narcotic effect: comparison of toxicity of class-based organic chemicals to Daphnia magna and Tetrahymena pyriformis.
    Zhang X; Qin W; He J; Wen Y; Su L; Sheng L; Zhao Y
    Chemosphere; 2013 Sep; 93(2):397-407. PubMed ID: 23786811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-toxicity relationships for benzenes evaluated with Tetrahymena pyriformis.
    Schultz TW
    Chem Res Toxicol; 1999 Dec; 12(12):1262-7. PubMed ID: 10604877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative structure-activity relationships for the inhibition toxicity to root elongation of Cucumis sativus of selected phenols and interspecies correlation with Tetrahymena pyriformis.
    Wang X; Sun C; Wang Y; Wang L
    Chemosphere; 2002 Jan; 46(2):153-61. PubMed ID: 11827272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Tetrahymena pyriformis toxicity based on hydrophobicity, polarity, ionization and reactivity of class-based compounds.
    Su L; Fu L; He J; Qin W; Sheng L; Abraham MH; Zhao YH
    SAR QSAR Environ Res; 2012 Jul; 23(5-6):537-52. PubMed ID: 22463052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of the ionization constant (pKa) in selecting models of toxicity in phenols.
    Schultz TW
    Ecotoxicol Environ Saf; 1987 Oct; 14(2):178-83. PubMed ID: 3121279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.