BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 10193578)

  • 21. Influence of plasma halide, pseudohalide and nitrite ions on myeloperoxidase-mediated protein and extracellular matrix damage.
    Xu S; Chuang CY; Malle E; Gamon LF; Hawkins CL; Davies MJ
    Free Radic Biol Med; 2022 Aug; 188():162-174. PubMed ID: 35718304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids.
    Pattison DI; Davies MJ; Hawkins CL
    Free Radic Res; 2012 Aug; 46(8):975-95. PubMed ID: 22348603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assay of the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase.
    Bozeman PM; Learn DB; Thomas EL
    J Immunol Methods; 1990 Jan; 126(1):125-33. PubMed ID: 2154520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro activation of dibromoacetonitrile to cyanide by myeloperoxidase.
    Al-Abbasi FA
    Toxicol Ind Health; 2016 Aug; 32(8):1478-1485. PubMed ID: 25614581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isoniazid as a substrate and inhibitor of myeloperoxidase: identification of amine adducts and the influence of superoxide dismutase on their formation.
    Forbes LV; Furtmüller PG; Khalilova I; Turner R; Obinger C; Kettle AJ
    Biochem Pharmacol; 2012 Oct; 84(7):949-60. PubMed ID: 22846601
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of different (pseudo)halide substrates on peroxidase-mediated killing of Actinobacillus actinomycetemcomitans.
    Ihalin R; Loimaranta V; Lenander-Lumikari M; Tenovuo J
    J Periodontal Res; 1998 Oct; 33(7):421-7. PubMed ID: 9842507
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms by which clofazimine and dapsone inhibit the myeloperoxidase system. A possible correlation with their anti-inflammatory properties.
    van Zyl JM; Basson K; Kriegler A; van der Walt BJ
    Biochem Pharmacol; 1991 Jul; 42(3):599-608. PubMed ID: 1650217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of neutrophil cytolysin production by target cells.
    Dallegri F; Patrone F; Ballestrero A; Frumento G; Sacchetti C
    Blood; 1986 May; 67(5):1265-72. PubMed ID: 3008887
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chlorination of N-acetyltyrosine with HOCl, chloramines, and myeloperoxidase-hydrogen peroxide-chloride system.
    Drabik G; Naskalski JW
    Acta Biochim Pol; 2001; 48(1):271-5. PubMed ID: 11440179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modification by fluoride, bromide, iodide, thiocyanate and nitrite anions of reaction of a myeloperoxidase-H2O2-Cl- system with nucleosides.
    Suzuki T; Ohshima H
    Chem Pharm Bull (Tokyo); 2003 Mar; 51(3):301-4. PubMed ID: 12612415
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidant membrane injury by the neutrophil myeloperoxidase system. I. Characterization of a liposome model and injury by myeloperoxidase, hydrogen peroxide, and halides.
    Sepe SM; Clark RA
    J Immunol; 1985 Mar; 134(3):1888-95. PubMed ID: 2981925
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The free amino acid tyrosine enhances the chlorinating activity of human myeloperoxidase.
    Vlasova II; Sokolov AV; Arnhold J
    J Inorg Biochem; 2012 Jan; 106(1):76-83. PubMed ID: 22112843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trypanosoma cruzi dihydrolipoamide dehydrogenase as target of reactive metabolites generated by cytochrome c/hydrogen peroxide (or linoleic acid hydroperoxide)/phenol systems.
    Gutiérrez-Correa J
    Free Radic Res; 2010 Nov; 44(11):1345-58. PubMed ID: 20815787
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A real-time-based in vitro assessment of the oxidative antimicrobial mechanisms of the myeloperoxidase-hydrogen peroxide-halide system.
    Atosuo J; Suominen E
    Mol Immunol; 2019 Dec; 116():38-44. PubMed ID: 31593870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Taurine chloramine is more selective than hypochlorous acid at targeting critical cysteines and inactivating creatine kinase and glyceraldehyde-3-phosphate dehydrogenase.
    Peskin AV; Winterbourn CC
    Free Radic Biol Med; 2006 Jan; 40(1):45-53. PubMed ID: 16337878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradation of methyl and ethyl mercury into inorganic mercury by other reactive oxygen species besides hydroxyl radical.
    Suda I; Takahashi H
    Arch Toxicol; 1992; 66(1):34-9. PubMed ID: 1316115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The reactivity of myeloperoxidase compound I formed with hypochlorous acid.
    Furtmüller PG; Burner U; Jantschko W; Regelsberger G; Obinger C
    Redox Rep; 2000; 5(4):173-8. PubMed ID: 10994870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of hypohalous acids and heme peroxidases with unsaturated phosphatidylcholines.
    Spalteholz H; Wenske K; Arnhold J
    Biofactors; 2005; 24(1-4):67-76. PubMed ID: 16403965
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Roles of superoxide and myeloperoxidase in ascorbate oxidation in stimulated neutrophils and H2O2-treated HL60 cells.
    Parker A; Cuddihy SL; Son TG; Vissers MC; Winterbourn CC
    Free Radic Biol Med; 2011 Oct; 51(7):1399-405. PubMed ID: 21791243
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reactive nitrogen intermediates and antimicrobial activity: role of nitrite.
    Klebanoff SJ
    Free Radic Biol Med; 1993 Apr; 14(4):351-60. PubMed ID: 8385644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.