These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 10193758)
1. A mathematical model of cell growth and alkane degradation in Wadden Sea sediment suspensions. Berthe-Corti L; Ebenhöh W Biosystems; 1999 Mar; 49(3):161-89. PubMed ID: 10193758 [TBL] [Abstract][Full Text] [Related]
2. [The diversity of alkane degrading bacteria in the enrichments with deep sea sediment of the South China Sea]. Liu Z; Shao ZZ Wei Sheng Wu Xue Bao; 2007 Oct; 47(5):869-73. PubMed ID: 18062265 [TBL] [Abstract][Full Text] [Related]
3. Anaerobic biodegradation of alkanes by enriched consortia under four different reducing conditions. So CM; Young LY Environ Toxicol Chem; 2001 Mar; 20(3):473-8. PubMed ID: 11349845 [TBL] [Abstract][Full Text] [Related]
4. Hexadecane biodegradation of high efficiency by bacterial isolates from Santos Basin sediments. Ferrari VB; Cesar A; Cayô R; Choueri RB; Okamoto DN; Freitas JG; Favero M; Gales AC; Niero CV; Saia FT; de Vasconcellos SP Mar Pollut Bull; 2019 May; 142():309-314. PubMed ID: 31232308 [TBL] [Abstract][Full Text] [Related]
5. Interrogation of Chesapeake Bay sediment microbial communities for intrinsic alkane-utilizing potential under anaerobic conditions. Johnson JM; Wawrik B; Isom C; Boling WB; Callaghan AV FEMS Microbiol Ecol; 2015 Feb; 91(2):1-14. PubMed ID: 25764556 [TBL] [Abstract][Full Text] [Related]
6. Anaerobic n-alkane metabolism by a sulfate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T. Cravo-Laureau C; Grossi V; Raphel D; Matheron R; Hirschler-Réa A Appl Environ Microbiol; 2005 Jul; 71(7):3458-67. PubMed ID: 16000749 [TBL] [Abstract][Full Text] [Related]
7. Metabolic and spatio-taxonomic response of uncultivated seafloor bacteria following the Deepwater Horizon oil spill. Handley KM; Piceno YM; Hu P; Tom LM; Mason OU; Andersen GL; Jansson JK; Gilbert JA ISME J; 2017 Nov; 11(11):2569-2583. PubMed ID: 28777379 [TBL] [Abstract][Full Text] [Related]
8. Diverse Bacterial Groups Contribute to the Alkane Degradation Potential of Chronically Polluted Subantarctic Coastal Sediments. Guibert LM; Loviso CL; Borglin S; Jansson JK; Dionisi HM; Lozada M Microb Ecol; 2016 Jan; 71(1):100-12. PubMed ID: 26547568 [TBL] [Abstract][Full Text] [Related]
9. Modelling of hexadecane degradation in continuous-flow cultures. Ebenhöh W; Berthe-Corti L Biosystems; 2001 Mar; 59(3):159-83. PubMed ID: 11311466 [TBL] [Abstract][Full Text] [Related]
10. Hexadecane mineralization in oxygen-controlled sediment-seawater cultivations with autochthonous microorganisms. Michaelsen M; Hulsch R; Höpner T; Berthe-Corti L Appl Environ Microbiol; 1992 Sep; 58(9):3072-7. PubMed ID: 1444421 [TBL] [Abstract][Full Text] [Related]
11. Isolation of alkane-degrading bacteria from deep-sea Mediterranean sediments. Tapilatu Y; Acquaviva M; Guigue C; Miralles G; Bertrand JC; Cuny P Lett Appl Microbiol; 2010 Feb; 50(2):234-6. PubMed ID: 19943883 [TBL] [Abstract][Full Text] [Related]
12. Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01. So CM; Young LY Appl Environ Microbiol; 1999 Dec; 65(12):5532-40. PubMed ID: 10584014 [TBL] [Abstract][Full Text] [Related]
13. Hexadecane and pristane degradation potential at the level of the aquifer--evidence from sediment incubations compared to in situ microcosms. Schurig C; Miltner A; Kaestner M Environ Sci Pollut Res Int; 2014; 21(15):9081-94. PubMed ID: 24522398 [TBL] [Abstract][Full Text] [Related]
14. Biodegradation of free phytol by bacterial communities isolated from marine sediments under aerobic and denitrifying conditions. Rontani JF; Bonin PC; Volkman JK Appl Environ Microbiol; 1999 Dec; 65(12):5484-92. PubMed ID: 10584007 [TBL] [Abstract][Full Text] [Related]
15. Anaerobic versus aerobic degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Lomans BP; den Camp HJ; Pol A; Vogels GD Appl Environ Microbiol; 1999 Feb; 65(2):438-43. PubMed ID: 9925565 [TBL] [Abstract][Full Text] [Related]
16. Biodegradation of hexadecane using sediments from rivers and lagoons of the Southern Gulf of Mexico. García-Cruz NU; Sánchez-Avila JI; Valdés-Lozano D; Gold-Bouchot G; Aguirre-Macedo L Mar Pollut Bull; 2018 Mar; 128():202-207. PubMed ID: 29571364 [TBL] [Abstract][Full Text] [Related]
17. Bacterial diversity of polluted surface sediments in the northern Adriatic Sea. Korlević M; Zucko J; Dragić MN; Blažina M; Pustijanac E; Zeljko TV; Gacesa R; Baranasic D; Starcevic A; Diminic J; Long PF; Cullum J; Hranueli D; Orlić S Syst Appl Microbiol; 2015 May; 38(3):189-97. PubMed ID: 25857844 [TBL] [Abstract][Full Text] [Related]
18. Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Aeckersberg F; Rainey FA; Widdel F Arch Microbiol; 1998 Oct; 170(5):361-9. PubMed ID: 9818355 [TBL] [Abstract][Full Text] [Related]