These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 10194200)

  • 1. Myogenic and vasoconstrictor responsiveness of skeletal muscle arterioles is diminished by hindlimb unloading.
    Delp MD
    J Appl Physiol (1985); 1999 Apr; 86(4):1178-84. PubMed ID: 10194200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonuniform changes in arteriolar myogenic tone within skeletal muscle following hindlimb unweighting.
    Heaps CL; Bowles DK
    J Appl Physiol (1985); 2002 Mar; 92(3):1145-51. PubMed ID: 11842052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of aging on vasoconstrictor and mechanical properties of rat skeletal muscle arterioles.
    Muller-Delp J; Spier SA; Ramsey MW; Lesniewski LA; Papadopoulos A; Humphrey JD; Delp MD
    Am J Physiol Heart Circ Physiol; 2002 May; 282(5):H1843-54. PubMed ID: 11959651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of aging and exercise training on endothelin-1 vasoconstrictor responses in rat skeletal muscle arterioles.
    Donato AJ; Lesniewski LA; Delp MD
    Cardiovasc Res; 2005 May; 66(2):393-401. PubMed ID: 15820208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of fiber composition and hindlimb unloading on the vasodilator properties of skeletal muscle arterioles.
    McCurdy MR; Colleran PN; Muller-Delp J; Delp MD
    J Appl Physiol (1985); 2000 Jul; 89(1):398-405. PubMed ID: 10904077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulated microgravity alters rat mesenteric artery vasoconstrictor dynamics through an intracellular Ca(2+) release mechanism.
    Colleran PN; Behnke BJ; Wilkerson MK; Donato AJ; Delp MD
    Am J Physiol Regul Integr Comp Physiol; 2008 May; 294(5):R1577-85. PubMed ID: 18353882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hindlimb unweighting alters endothelium-dependent vasodilation and ecNOS expression in soleus arterioles.
    Schrage WG; Woodman CR; Laughlin MH
    J Appl Physiol (1985); 2000 Oct; 89(4):1483-90. PubMed ID: 11007586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of myogenic enhancement by norepinephrine.
    Liu J; Hill MA; Meininger GA
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H440-6. PubMed ID: 7511346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional remodeling of skeletal muscle microvasculature is induced by simulated microgravity.
    Delp MD; Colleran PN; Wilkerson MK; McCurdy MR; Muller-Delp J
    Am J Physiol Heart Circ Physiol; 2000 Jun; 278(6):H1866-73. PubMed ID: 10843883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hindlimb unweighting on the mechanical and structure properties of the rat abdominal aorta.
    Papadopoulos A; Delp MD
    J Appl Physiol (1985); 2003 Feb; 94(2):439-45. PubMed ID: 12391084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rat small mesenteric artery function after hindlimb suspension.
    Looft-Wilson RC; Gisolfi CV
    J Appl Physiol (1985); 2000 Apr; 88(4):1199-206. PubMed ID: 10749808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hindlimb unweighting does not alter vasoconstrictor responsiveness and nitric oxide-mediated inhibition of sympathetic vasoconstriction.
    Just TP; Jendzjowsky NG; DeLorey DS
    J Physiol; 2015 May; 593(9):2213-24. PubMed ID: 25752721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of mibefradil and nifedipine on arteriolar myogenic responsiveness and intracellular Ca(2+).
    Potocnik SJ; Murphy TV; Kotecha N; Hill MA
    Br J Pharmacol; 2000 Nov; 131(6):1065-72. PubMed ID: 11082112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological evidence for capacitative Ca(2+) entry in cannulated and pressurized skeletal muscle arterioles.
    Potocnik SJ; Hill MA
    Br J Pharmacol; 2001 Sep; 134(2):247-56. PubMed ID: 11564642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diaphragm arterioles are less responsive to alpha1- adrenergic constriction than gastrocnemius arterioles.
    Aaker A; Laughlin MH
    J Appl Physiol (1985); 2002 May; 92(5):1808-16. PubMed ID: 11960928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium measurement in isolated arterioles during myogenic and agonist stimulation.
    Meininger GA; Zawieja DC; Falcone JC; Hill MA; Davey JP
    Am J Physiol; 1991 Sep; 261(3 Pt 2):H950-9. PubMed ID: 1887938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal aspects of Ca(2+) and myosin phosphorylation during myogenic and norepinephrine-induced arteriolar constriction.
    Zou H; Ratz PH; Hill MA
    J Vasc Res; 2000; 37(6):556-67. PubMed ID: 11146410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myogenic contraction in rat skeletal muscle arterioles: smooth muscle membrane potential and Ca(2+) signaling.
    Kotecha N; Hill MA
    Am J Physiol Heart Circ Physiol; 2005 Oct; 289(4):H1326-34. PubMed ID: 15863456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of hindlimb unloading on rat cerebral, splenic, and mesenteric resistance artery morphology.
    Wilkerson MK; Muller-Delp J; Colleran PN; Delp MD
    J Appl Physiol (1985); 1999 Dec; 87(6):2115-21. PubMed ID: 10601157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelial independence of myogenic response in isolated skeletal muscle arterioles.
    Falcone JC; Davis MJ; Meininger GA
    Am J Physiol; 1991 Jan; 260(1 Pt 2):H130-5. PubMed ID: 1992791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.