These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 10194349)
1. Identification of residues of Escherichia coli phosphofructokinase that contribute to nucleotide binding and specificity. Wang X; Kemp RG Biochemistry; 1999 Apr; 38(14):4313-8. PubMed ID: 10194349 [TBL] [Abstract][Full Text] [Related]
2. Mutational analysis of conserved glycine residues 142, 143 and 146 reveals Gly(142) is critical for tetramerization of CTP synthase from Escherichia coli. Lunn FA; Macleod TJ; Bearne SL Biochem J; 2008 May; 412(1):113-21. PubMed ID: 18260824 [TBL] [Abstract][Full Text] [Related]
3. Further kinetic characterization of the non-allosteric phosphofructokinase from Escherichia coli K-12. Ewings KN; Doelle HW Biochim Biophys Acta; 1980 Sep; 615(1):103-12. PubMed ID: 6448638 [TBL] [Abstract][Full Text] [Related]
4. The N-terminus of the regulatory chain of Escherichia coli aspartate transcarbamoylase is important for both nucleotide binding and heterotropic effects. Sakash JB; Kantrowitz ER Biochemistry; 1998 Jan; 37(1):281-8. PubMed ID: 9425049 [TBL] [Abstract][Full Text] [Related]
5. Site-directed mutagenesis of two highly conserved residues near the active site of phosphofructo-1-kinase. Zheng RL; Kemp RG Biochem Biophys Res Commun; 1994 Mar; 199(2):577-81. PubMed ID: 8135798 [TBL] [Abstract][Full Text] [Related]
6. The site for the allosteric activator GTP of Escherichia coli UMP kinase. Marco-Marín C; Rubio V FEBS Lett; 2009 Jan; 583(1):185-9. PubMed ID: 19071117 [TBL] [Abstract][Full Text] [Related]
7. Aspartate-107 and leucine-109 facilitate efficient coupling of glutamine hydrolysis to CTP synthesis by Escherichia coli CTP synthase. Iyengar A; Bearne SL Biochem J; 2003 Feb; 369(Pt 3):497-507. PubMed ID: 12383057 [TBL] [Abstract][Full Text] [Related]
8. The activation of Escherichia coli aspartate transcarbamylase by ATP. Specific involvement of helix H2' at the hydrophobic interface between the two domains of the regulatory chains. Xi XG; De Staercke C; Van Vliet F; Triniolles F; Jacobs A; Stas PP; Ladjimi MM; Simon V; Cunin R; Hervé G J Mol Biol; 1994 Sep; 242(2):139-49. PubMed ID: 8089837 [TBL] [Abstract][Full Text] [Related]
9. Probing the nucleotide-binding site of Escherichia coli succinyl-CoA synthetase. Joyce MA; Fraser ME; Brownie ER; James MN; Bridger WA; Wolodko WT Biochemistry; 1999 Jun; 38(22):7273-83. PubMed ID: 10353839 [TBL] [Abstract][Full Text] [Related]
10. Uridine kinase: altered enzyme with decreased affinities for uridine and CTP. Ropp PA; Traut TW Arch Biochem Biophys; 1998 Nov; 359(1):63-8. PubMed ID: 9799561 [TBL] [Abstract][Full Text] [Related]
11. Limited proteolysis of Escherichia coli cytidine 5'-triphosphate synthase. Identification of residues required for CTP formation and GTP-dependent activation of glutamine hydrolysis. Simard D; Hewitt KA; Lunn F; Iyengar A; Bearne SL Eur J Biochem; 2003 May; 270(10):2195-206. PubMed ID: 12752439 [TBL] [Abstract][Full Text] [Related]
12. Structural and enzymatic investigation of the Sulfolobus solfataricus uridylate kinase shows competitive UTP inhibition and the lack of GTP stimulation. Jensen KS; Johansson E; Jensen KF Biochemistry; 2007 Mar; 46(10):2745-57. PubMed ID: 17297917 [TBL] [Abstract][Full Text] [Related]
13. The active site of pyrophosphate-dependent phosphofructo-1-kinase based on site-directed mutagenesis and molecular modeling. Hinds RM; Xu J; Walters DE; Kemp RG Arch Biochem Biophys; 1998 Jan; 349(1):47-52. PubMed ID: 9439581 [TBL] [Abstract][Full Text] [Related]
14. Characterization of three essential residues in the conserved ATP-binding region of Epstein-Barr virus thymidine kinase. Wu CC; Hsu TY; Chen JY Biochemistry; 2005 Mar; 44(12):4785-93. PubMed ID: 15779905 [TBL] [Abstract][Full Text] [Related]
15. An essential methionine residue involved in substrate binding by phosphofructokinases. Wang X; Deng Z; Kemp RG Biochem Biophys Res Commun; 1998 Sep; 250(2):466-8. PubMed ID: 9753654 [TBL] [Abstract][Full Text] [Related]
16. Active-site mutants altering the cooperativity of E. coli phosphofructokinase. Berger SA; Evans PR Nature; 1990 Feb; 343(6258):575-6. PubMed ID: 2137204 [TBL] [Abstract][Full Text] [Related]
17. Catalytic roles of arginine residues 82 and 92 of Escherichia coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase: site-directed mutagenesis and biochemical studies. Li Y; Wu Y; Blaszczyk J; Ji X; Yan H Biochemistry; 2003 Feb; 42(6):1581-8. PubMed ID: 12578371 [TBL] [Abstract][Full Text] [Related]
18. Determination of nucleoside triphosphates by use of combined reactions of hexokinase and glucose-6-phosphate dehydrogenase. Simofuruya H; Suzuki J Biochem Int; 1991 Dec; 25(6):1071-6. PubMed ID: 1810251 [TBL] [Abstract][Full Text] [Related]
19. Fold recognition, homology modeling, docking simulations, kinetics analysis and mutagenesis of ATP/CTP:tRNA nucleotidyltransferase from Methanococcus jannaschii. Bujnicki JM; Albert MA; Nelson DJ; Thurlow DL Proteins; 2003 Aug; 52(3):349-59. PubMed ID: 12866049 [TBL] [Abstract][Full Text] [Related]
20. Mutations at four active site residues of biotin carboxylase abolish substrate-induced synergism by biotin. Blanchard CZ; Lee YM; Frantom PA; Waldrop GL Biochemistry; 1999 Mar; 38(11):3393-400. PubMed ID: 10079084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]