BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 10194349)

  • 1. Identification of residues of Escherichia coli phosphofructokinase that contribute to nucleotide binding and specificity.
    Wang X; Kemp RG
    Biochemistry; 1999 Apr; 38(14):4313-8. PubMed ID: 10194349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational analysis of conserved glycine residues 142, 143 and 146 reveals Gly(142) is critical for tetramerization of CTP synthase from Escherichia coli.
    Lunn FA; Macleod TJ; Bearne SL
    Biochem J; 2008 May; 412(1):113-21. PubMed ID: 18260824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further kinetic characterization of the non-allosteric phosphofructokinase from Escherichia coli K-12.
    Ewings KN; Doelle HW
    Biochim Biophys Acta; 1980 Sep; 615(1):103-12. PubMed ID: 6448638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The N-terminus of the regulatory chain of Escherichia coli aspartate transcarbamoylase is important for both nucleotide binding and heterotropic effects.
    Sakash JB; Kantrowitz ER
    Biochemistry; 1998 Jan; 37(1):281-8. PubMed ID: 9425049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-directed mutagenesis of two highly conserved residues near the active site of phosphofructo-1-kinase.
    Zheng RL; Kemp RG
    Biochem Biophys Res Commun; 1994 Mar; 199(2):577-81. PubMed ID: 8135798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The site for the allosteric activator GTP of Escherichia coli UMP kinase.
    Marco-Marín C; Rubio V
    FEBS Lett; 2009 Jan; 583(1):185-9. PubMed ID: 19071117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aspartate-107 and leucine-109 facilitate efficient coupling of glutamine hydrolysis to CTP synthesis by Escherichia coli CTP synthase.
    Iyengar A; Bearne SL
    Biochem J; 2003 Feb; 369(Pt 3):497-507. PubMed ID: 12383057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The activation of Escherichia coli aspartate transcarbamylase by ATP. Specific involvement of helix H2' at the hydrophobic interface between the two domains of the regulatory chains.
    Xi XG; De Staercke C; Van Vliet F; Triniolles F; Jacobs A; Stas PP; Ladjimi MM; Simon V; Cunin R; Hervé G
    J Mol Biol; 1994 Sep; 242(2):139-49. PubMed ID: 8089837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the nucleotide-binding site of Escherichia coli succinyl-CoA synthetase.
    Joyce MA; Fraser ME; Brownie ER; James MN; Bridger WA; Wolodko WT
    Biochemistry; 1999 Jun; 38(22):7273-83. PubMed ID: 10353839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uridine kinase: altered enzyme with decreased affinities for uridine and CTP.
    Ropp PA; Traut TW
    Arch Biochem Biophys; 1998 Nov; 359(1):63-8. PubMed ID: 9799561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limited proteolysis of Escherichia coli cytidine 5'-triphosphate synthase. Identification of residues required for CTP formation and GTP-dependent activation of glutamine hydrolysis.
    Simard D; Hewitt KA; Lunn F; Iyengar A; Bearne SL
    Eur J Biochem; 2003 May; 270(10):2195-206. PubMed ID: 12752439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and enzymatic investigation of the Sulfolobus solfataricus uridylate kinase shows competitive UTP inhibition and the lack of GTP stimulation.
    Jensen KS; Johansson E; Jensen KF
    Biochemistry; 2007 Mar; 46(10):2745-57. PubMed ID: 17297917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The active site of pyrophosphate-dependent phosphofructo-1-kinase based on site-directed mutagenesis and molecular modeling.
    Hinds RM; Xu J; Walters DE; Kemp RG
    Arch Biochem Biophys; 1998 Jan; 349(1):47-52. PubMed ID: 9439581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of three essential residues in the conserved ATP-binding region of Epstein-Barr virus thymidine kinase.
    Wu CC; Hsu TY; Chen JY
    Biochemistry; 2005 Mar; 44(12):4785-93. PubMed ID: 15779905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An essential methionine residue involved in substrate binding by phosphofructokinases.
    Wang X; Deng Z; Kemp RG
    Biochem Biophys Res Commun; 1998 Sep; 250(2):466-8. PubMed ID: 9753654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active-site mutants altering the cooperativity of E. coli phosphofructokinase.
    Berger SA; Evans PR
    Nature; 1990 Feb; 343(6258):575-6. PubMed ID: 2137204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic roles of arginine residues 82 and 92 of Escherichia coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase: site-directed mutagenesis and biochemical studies.
    Li Y; Wu Y; Blaszczyk J; Ji X; Yan H
    Biochemistry; 2003 Feb; 42(6):1581-8. PubMed ID: 12578371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of nucleoside triphosphates by use of combined reactions of hexokinase and glucose-6-phosphate dehydrogenase.
    Simofuruya H; Suzuki J
    Biochem Int; 1991 Dec; 25(6):1071-6. PubMed ID: 1810251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fold recognition, homology modeling, docking simulations, kinetics analysis and mutagenesis of ATP/CTP:tRNA nucleotidyltransferase from Methanococcus jannaschii.
    Bujnicki JM; Albert MA; Nelson DJ; Thurlow DL
    Proteins; 2003 Aug; 52(3):349-59. PubMed ID: 12866049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations at four active site residues of biotin carboxylase abolish substrate-induced synergism by biotin.
    Blanchard CZ; Lee YM; Frantom PA; Waldrop GL
    Biochemistry; 1999 Mar; 38(11):3393-400. PubMed ID: 10079084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.