These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 10194922)
1. Individual based modeling and parameter estimation for a Lotka-Volterra system. Waniewski J; Jedruch W Math Biosci; 1999 Mar; 157(1-2):23-36. PubMed ID: 10194922 [TBL] [Abstract][Full Text] [Related]
2. Stochastic analysis of the Lotka-Volterra model for ecosystems. Cai GQ; Lin YK Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 1):041910. PubMed ID: 15600438 [TBL] [Abstract][Full Text] [Related]
4. Extinction dynamics of Lotka-Volterra ecosystems on evolving networks. Coppex F; Droz M; Lipowski A Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061901. PubMed ID: 15244611 [TBL] [Abstract][Full Text] [Related]
5. A stochastic model for predator-prey systems: basic properties, stability and computer simulation. Abundo M J Math Biol; 1991; 29(6):495-511. PubMed ID: 1895019 [TBL] [Abstract][Full Text] [Related]
6. Predator-prey dynamics in P systems ruled by metabolic algorithm. Fontana F; Manca V Biosystems; 2008 Mar; 91(3):545-57. PubMed ID: 17720307 [TBL] [Abstract][Full Text] [Related]
7. The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium. Xiong JJ; Li X; Wang H Math Biosci Eng; 2019 Mar; 16(4):2717-2737. PubMed ID: 31137234 [TBL] [Abstract][Full Text] [Related]
8. Coexistence versus extinction in the stochastic cyclic Lotka-Volterra model. Reichenbach T; Mobilia M; Frey E Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051907. PubMed ID: 17279939 [TBL] [Abstract][Full Text] [Related]
9. Spontaneous symmetry breaking of population: Stochastic Lotka-Volterra model for competition among two similar preys and predators. Silva-Dias L; López-Castillo A Math Biosci; 2018 Jun; 300():36-46. PubMed ID: 29571811 [TBL] [Abstract][Full Text] [Related]
10. Effect of directional migration on Lotka-Volterra system with desert. Nagatani T; Tainaka KI; Ichinose G Biosystems; 2017 Dec; 162():75-80. PubMed ID: 28964788 [TBL] [Abstract][Full Text] [Related]
11. Reconstructing the hidden states in time course data of stochastic models. Zimmer C Math Biosci; 2015 Nov; 269():117-29. PubMed ID: 26363082 [TBL] [Abstract][Full Text] [Related]
12. Lotka-Volterra system with Volterra multiplier. Gürlebeck K; Ji X Adv Exp Med Biol; 2011; 696():647-55. PubMed ID: 21431606 [TBL] [Abstract][Full Text] [Related]
13. [Analysis of seasonal fluctuations in the Lotka-Volterra model]. Lobanov AI; Sarancha DA; Starozhilova TK Biofizika; 2002; 47(2):325-30. PubMed ID: 11969172 [TBL] [Abstract][Full Text] [Related]
14. Influence of stochastic perturbation on prey-predator systems. Rudnicki R; Pichór K Math Biosci; 2007 Mar; 206(1):108-19. PubMed ID: 16624335 [TBL] [Abstract][Full Text] [Related]
15. [Asymptotic solutions of population dynamic equations]. Rustamov NA Biofizika; 2000; 45(4):700-3. PubMed ID: 11040980 [TBL] [Abstract][Full Text] [Related]
17. Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model. Afraimovich V; Tristan I; Huerta R; Rabinovich MI Chaos; 2008 Dec; 18(4):043103. PubMed ID: 19123613 [TBL] [Abstract][Full Text] [Related]
18. Persistence in Stochastic Lotka-Volterra Food Chains with Intraspecific Competition. Hening A; Nguyen DH Bull Math Biol; 2018 Oct; 80(10):2527-2560. PubMed ID: 30109461 [TBL] [Abstract][Full Text] [Related]
19. A mutualism-parasitism system modeling host and parasite with mutualism at low density. Wang Y; Deangelis DL Math Biosci Eng; 2012 Apr; 9(2):431-44. PubMed ID: 22901072 [TBL] [Abstract][Full Text] [Related]
20. Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete time measurements. Leander J; Lundh T; Jirstrand M Math Biosci; 2014 May; 251():54-62. PubMed ID: 24631177 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]