BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 10195151)

  • 21. Neural basis of visually guided head movements studied with fMRI.
    Petit L; Beauchamp MS
    J Neurophysiol; 2003 May; 89(5):2516-27. PubMed ID: 12611944
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Target selection by the frontal cortex during coordinated saccadic and smooth pursuit eye movements.
    Srihasam K; Bullock D; Grossberg S
    J Cogn Neurosci; 2009 Aug; 21(8):1611-27. PubMed ID: 18823247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stimulus-response incompatibility activates cortex proximate to three eye fields.
    Merriam EP; Colby CL; Thulborn KR; Luna B; Olson CR; Sweeney JA
    Neuroimage; 2001 May; 13(5):794-800. PubMed ID: 11304076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Saccade initiation and latency deficits after combined lesions of the frontal and posterior eye fields in monkeys.
    Lynch JC
    J Neurophysiol; 1992 Nov; 68(5):1913-6. PubMed ID: 1479455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The primate frontal eye field and the generation of saccadic eye movements: comparison of lesion and acute inactivation/activation studies.
    Dias EC; Segraves MA
    Rev Bras Biol; 1996 Dec; 56 Su 1 Pt 2():239-55. PubMed ID: 9394505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Control of visual exploration: anatomic and physiologic data].
    Mauguiere F
    J Fr Ophtalmol; 1985; 8(12):803-12. PubMed ID: 3938788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of "blind" distractors on eye movement trajectories in visual hemifield defects.
    Van der Stigchel S; van Zoest W; Theeuwes J; Barton JJ
    J Cogn Neurosci; 2008 Nov; 20(11):2025-36. PubMed ID: 18416675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reversible inactivation of macaque dorsomedial frontal cortex: effects on saccades and fixations.
    Sommer MA; Tehovnik EJ
    Exp Brain Res; 1999 Feb; 124(4):429-46. PubMed ID: 10090655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anatomical organization of the eye fields in the human and non-human primate frontal cortex.
    Amiez C; Petrides M
    Prog Neurobiol; 2009 Oct; 89(2):220-30. PubMed ID: 19665515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activity in human frontal cortex associated with spatial working memory and saccadic behavior.
    Postle BR; Berger JS; Taich AM; D'Esposito M
    J Cogn Neurosci; 2000; 12 Suppl 2():2-14. PubMed ID: 11506643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time course of attentional modulation in the frontal eye field during curve tracing.
    Khayat PS; Pooresmaeili A; Roelfsema PR
    J Neurophysiol; 2009 Apr; 101(4):1813-22. PubMed ID: 19176609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intracerebral dynamics of saccade generation in the human frontal eye field and supplementary eye field.
    Lachaux JP; Hoffmann D; Minotti L; Berthoz A; Kahane P
    Neuroimage; 2006 May; 30(4):1302-12. PubMed ID: 16412667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visually guided saccade versus eye-hand reach: contrasting neuronal activity in the cortical supplementary and frontal eye fields.
    Mushiake H; Fujii N; Tanji J
    J Neurophysiol; 1996 May; 75(5):2187-91. PubMed ID: 8734617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lesions of the frontal eye field impair pursuit eye movements, but preserve the predictions driving them.
    Keating EG
    Behav Brain Res; 1993 Feb; 53(1-2):91-104. PubMed ID: 8466669
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of the human dorsolateral prefrontal cortex in ocular motor behavior.
    Pierrot-Deseilligny Ch; Müri RM; Nyffeler T; Milea D
    Ann N Y Acad Sci; 2005 Apr; 1039():239-51. PubMed ID: 15826978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bilateral saccadic deficits following large and reversible inactivation of unilateral frontal eye field.
    Peel TR; Johnston K; Lomber SG; Corneil BD
    J Neurophysiol; 2014 Jan; 111(2):415-33. PubMed ID: 24155010
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spontaneous recovery of visually-triggered saccades after focal lesions of the frontal and parietal eye fields: a combined longitudinal oculomotor and fMRI study.
    Nyffeler T; Hubl D; Wurtz P; Wiest R; Hess CW; Müri RM
    Clin Neurophysiol; 2011 Jun; 122(6):1203-10. PubMed ID: 21109485
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of effector-specific signals in frontal and parietal cortices.
    Lawrence BM; Snyder LH
    J Neurophysiol; 2006 Sep; 96(3):1393-400. PubMed ID: 16723409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Executive control of countermanding saccades by the supplementary eye field.
    Stuphorn V; Schall JD
    Nat Neurosci; 2006 Jul; 9(7):925-31. PubMed ID: 16732274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. fMRI activation in the human frontal eye field is correlated with saccadic reaction time.
    Connolly JD; Goodale MA; Goltz HC; Munoz DP
    J Neurophysiol; 2005 Jul; 94(1):605-11. PubMed ID: 15590732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.