BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 10195207)

  • 1. An ambiguous fast synapse: a new twist in the tale of two transmitters.
    Salter MW; De Koninck Y
    Nat Neurosci; 1999 Mar; 2(3):199-200. PubMed ID: 10195207
    [No Abstract]   [Full Text] [Related]  

  • 2. Synaptic corelease of ATP and GABA in cultured spinal neurons.
    Jo YH; Schlichter R
    Nat Neurosci; 1999 Mar; 2(3):241-5. PubMed ID: 10195216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycine and GABA(A) receptor subunits on Renshaw cells: relationship with presynaptic neurotransmitters and postsynaptic gephyrin clusters.
    Geiman EJ; Zheng W; Fritschy JM; Alvarez FJ
    J Comp Neurol; 2002 Mar; 444(3):275-89. PubMed ID: 11840480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory amino acid transmitters associated with axons in presynaptic apposition to cutaneous primary afferent axons in the cat spinal cord.
    Sutherland FI; Bannatyne BA; Kerr R; Riddell JS; Maxwell DJ
    J Comp Neurol; 2002 Oct; 452(2):154-62. PubMed ID: 12271489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C; Seebach B; Ziskind-Conhaim L
    Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of glutamatergic synaptic input to spinal lamina II(o) neurons by presynaptic alpha(2)-adrenergic receptors.
    Pan YZ; Li DP; Pan HL
    J Neurophysiol; 2002 Apr; 87(4):1938-47. PubMed ID: 11929913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABA-immunoreactive neurons and terminals in the cat periaqueductal gray matter: a light and electron microscopic study.
    Barbaresi P
    J Neurocytol; 2005 Dec; 34(6):471-87. PubMed ID: 16902767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational sophistication at a single GABAergic connection.
    Pavlov I; Walker MC; Kullmann DM
    Neuron; 2009 Sep; 63(6):716-8. PubMed ID: 19778499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synapses on GABAergic neurons in the basolateral nucleus of the rat amygdala: double-labeling immunoelectron microscopy.
    Li R; Nishijo H; Ono T; Ohtani Y; Ohtani O
    Synapse; 2002 Jan; 43(1):42-50. PubMed ID: 11746732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionotropic glutamate receptors are expressed in GABAergic terminals in the rat superficial dorsal horn.
    Lu CR; Willcockson HH; Phend KD; Lucifora S; Darstein M; Valtschanoff JG; Rustioni A
    J Comp Neurol; 2005 May; 486(2):169-78. PubMed ID: 15844209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical analysis and intersegmental delays reveal possible roles of network depression in the generation of spontaneous activity in the chick embryo spinal cord.
    Tabak J; O'Donovan MJ
    Ann N Y Acad Sci; 1998 Nov; 860():428-31. PubMed ID: 9928330
    [No Abstract]   [Full Text] [Related]  

  • 12. Regulation of synaptic inputs to paraventricular-spinal output neurons by alpha2 adrenergic receptors.
    Li DP; Atnip LM; Chen SR; Pan HL
    J Neurophysiol; 2005 Jan; 93(1):393-402. PubMed ID: 15356178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of sensory input to the spinal cord by presynaptic ionotropic glutamate receptors.
    Rustioni A
    Arch Ital Biol; 2005 May; 143(2):103-12. PubMed ID: 16106991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct mechanisms of presynaptic inhibition at GABAergic synapses of the rat substantia nigra pars compacta.
    Giustizieri M; Bernardi G; Mercuri NB; Berretta N
    J Neurophysiol; 2005 Sep; 94(3):1992-2003. PubMed ID: 15944237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurotransmitters and their receptors in the basal ganglia.
    McGeer PL; McGeer EG
    Adv Neurol; 1993; 60():93-101. PubMed ID: 8093584
    [No Abstract]   [Full Text] [Related]  

  • 16. [Possible general mechanism of the presynaptic action of mediators].
    Abramets II; Komissarov IV
    Dokl Akad Nauk SSSR; 1986; 287(1):245-8. PubMed ID: 2869927
    [No Abstract]   [Full Text] [Related]  

  • 17. Neuroscience. Making synapses: a balancing act.
    Hussain NK; Sheng M
    Science; 2005 Feb; 307(5713):1207-8. PubMed ID: 15731430
    [No Abstract]   [Full Text] [Related]  

  • 18. Spontaneous network activity in the embryonic spinal cord regulates AMPAergic and GABAergic synaptic strength.
    Gonzalez-Islas C; Wenner P
    Neuron; 2006 Feb; 49(4):563-75. PubMed ID: 16476665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptogenesis and amino acid release from long term embryonic rat spinal cord neuronal culture using tissue culture inserts.
    Marsala M; Kakinohana O; Hefferan MP; Cizkova D; Kinjoh K; Marsala S
    J Neurosci Methods; 2005 Jan; 141(1):21-7. PubMed ID: 15585285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased nociceptive input rapidly modulates spinal GABAergic transmission through endogenously released glutamate.
    Zhou HY; Zhang HM; Chen SR; Pan HL
    J Neurophysiol; 2007 Jan; 97(1):871-82. PubMed ID: 17108089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.