BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 10195288)

  • 1. Mutations to alter Aspergillus awamori glucoamylase selectivity. IV. Combinations of Asn20-->Cys/Ala27-->Cys, Ser30-->Pro, Gly137-->Ala, 311-4 loop, Ser411-->Ala and Ser436-->Pro.
    Liu HL; Ford C; Reilly PJ
    Protein Eng; 1999 Feb; 12(2):163-72. PubMed ID: 10195288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations to alter Aspergillus awamori glucoamylase selectivity. III. Asn20-->Cys/Ala27-->Cys, Ala27-->Pro, Ser30-->Pro, Lys108-->Arg, Lys108-->Met, Gly137-->Ala, 311-314 Loop, Tyr312-->Trp and Ser436-->Pro.
    Liu HL; Coutinho PM; Ford C; Reilly PJ
    Protein Eng; 1998 May; 11(5):389-98. PubMed ID: 9681872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of Aspergillus awamori glucoamylase by proline substitution and combining stabilizing mutations.
    Allen MJ; Coutinho PM; Ford CF
    Protein Eng; 1998 Sep; 11(9):783-8. PubMed ID: 9796827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations to alter Aspergillus awamori glucoamylase selectivity. II. Mutation of residues 119 and 121.
    Fang TY; Honzatko RB; Reilly PJ; Ford C
    Protein Eng; 1998 Feb; 11(2):127-33. PubMed ID: 9605547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations to alter Aspergillus awamori glucoamylase selectivity. I. Tyr48Phe49-->Trp, Tyr116-->Trp, Tyr175-->Phe, Arg241-->Lys, Ser411-->Ala and Ser411-->Gly.
    Fang TY; Coutinho PM; Reilly PJ; Ford C
    Protein Eng; 1998 Feb; 11(2):119-26. PubMed ID: 9605546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of introducing proline residues on the stability of Aspergillus awamori.
    Li Y; Reilly PJ; Ford C
    Protein Eng; 1997 Oct; 10(10):1199-204. PubMed ID: 9488144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replacement and deletion mutations in the catalytic domain and belt region of Aspergillus awamori glucoamylase to enhance thermostability.
    Liu HL; Doleyres Y; Coutinho PM; Ford C; Reilly PJ
    Protein Eng; 2000 Sep; 13(9):655-9. PubMed ID: 11054460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of replacing helical glycine residues with alanines on reversible and irreversible stability and production of Aspergillus awamori glucoamylase.
    Chen HM; Li Y; Panda T; Buehler FU; Ford C; Reilly PJ
    Protein Eng; 1996 Jun; 9(6):499-505. PubMed ID: 8862550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational modulation of substrate bond-type specificity and thermostability of glucoamylase from Aspergillus awamori by replacement with short homologue active site sequences and thiol/disulfide engineering.
    Fierobe HP; Stoffer BB; Frandsen TP; Svensson B
    Biochemistry; 1996 Jul; 35(26):8696-704. PubMed ID: 8679632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect on thermostability and catalytic activity of introducing disulfide bonds into Aspergillus awamori glucoamylase.
    Li Y; Coutinho PM; Ford C
    Protein Eng; 1998 Aug; 11(8):661-7. PubMed ID: 9749918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic properties of the cysteinesulfinic acid derivative of the catalytic-base mutant Glu400-->Cys of glucoamylase from Aspergillus awamori.
    Fierobe HP; Clarke AJ; Tull D; Svensson B
    Biochemistry; 1998 Mar; 37(11):3753-9. PubMed ID: 9521694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein engineering to improve the thermostability of glucoamylase from Aspergillus awamori based on molecular dynamics simulations.
    Liu HL; Wang WC
    Protein Eng; 2003 Jan; 16(1):19-25. PubMed ID: 12646689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein engineering of Aspergillus awamori glucoamylase to increase its pH optimum.
    Fang TY; Ford C
    Protein Eng; 1998 May; 11(5):383-8. PubMed ID: 9681871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving operating performance of glucoamylase by mutagenesis.
    Ford C
    Curr Opin Biotechnol; 1999 Aug; 10(4):353-7. PubMed ID: 10449316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression and characterization of Aspergillus awamori wild-type and mutant glucoamylase secreted by the methylotrophic yeast Pichia pastoris: comparison with wild-type recombinant glucoamylase produced using Saccharomyces cerevisiae and Aspergillus niger as hosts.
    Fierobe HP; Mirgorodskaya E; Frandsen TP; Roepstorff P; Svensson B
    Protein Expr Purif; 1997 Mar; 9(2):159-70. PubMed ID: 9056481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional and structural roles of the highly conserved Trp120 loop region of glucoamylase from Aspergillus awamori.
    Natarajan S; Sierks MR
    Biochemistry; 1996 Mar; 35(9):3050-8. PubMed ID: 8608145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cassette mutagenesis of Aspergillus awamori glucoamylase near its general acid residue to probe its catalytic and pH properties.
    Bakir U; Coutinho PM; Sullivan PA; Ford C; Reilly PJ
    Protein Eng; 1993 Nov; 6(8):939-46. PubMed ID: 8309943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional roles of the invariant aspartic acid 55, tyrosine 306, and aspartic acid 309 in glucoamylase from Aspergillus awamori studied by mutagenesis.
    Sierks MR; Svensson B
    Biochemistry; 1993 Feb; 32(4):1113-7. PubMed ID: 8424940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and elimination by site-directed mutagenesis of thermolabile aspartyl bonds in Aspergillus awamori glucoamylase.
    Chen HM; Ford C; Reilly PJ
    Protein Eng; 1995 Jun; 8(6):575-82. PubMed ID: 8532682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restoration of catalytic activity beyond wild-type level in glucoamylase from Aspergillus awamori by oxidation of the Glu400-->Cys catalytic-base mutant to cysteinesulfinic acid.
    Fierobe HP; Mirgorodskaya E; McGuire KA; Roepstorff P; Svensson B; Clarke AJ
    Biochemistry; 1998 Mar; 37(11):3743-52. PubMed ID: 9521693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.