These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 10196721)
1. NMRD investigation of DyDTPA- and GdDTPA-labeled starch particles. Selection of a suitable suspension medium and influence of the starch matrix on relaxivity. Fossheim SL; Spiller M; Kellar KE Invest Radiol; 1999 Apr; 34(4):287-95. PubMed ID: 10196721 [TBL] [Abstract][Full Text] [Related]
2. NMRD assessment of Gd-DTPA-bis(methoxyethylamide), (Gd-DTPA-BMEA), a nonionic MRI agent. Adzamli K; Periasamy MP; Spiller M; Koenig SH Invest Radiol; 1999 Jun; 34(6):410-4. PubMed ID: 10353033 [TBL] [Abstract][Full Text] [Related]
3. Cerebrovascular transit characteristics of DyDTPA-BMA and GdDTPA-BMA on normal and ischemic cat brain. Kucharczyk J; Asgari H; Mintorovitch J; Vexler Z; Rocklage S; Watson A; Moseley M AJNR Am J Neuroradiol; 1993; 14(2):289-96. PubMed ID: 8456701 [TBL] [Abstract][Full Text] [Related]
5. Investigation of lanthanide-based starch particles as a model system for liver contrast agents. Fossheim SL; Kellar KE; Mansson S; Colet JM; Rongved P; Fahlvik AK; Klaveness J J Magn Reson Imaging; 1999 Feb; 9(2):295-303. PubMed ID: 10077028 [TBL] [Abstract][Full Text] [Related]
6. Delineation of acute myocardial infarction with dysprosium DTPA-BMA: influence of dose of magnetic susceptibility contrast medium. Saeed M; Wendland MF; Yu KK; Higgins CB J Am Coll Cardiol; 1992 Dec; 20(7):1634-41. PubMed ID: 1452938 [TBL] [Abstract][Full Text] [Related]
7. Phosphonate-modified GdDTPA complexes. I. NMRD study of the solution behavior of new tissue-specific contrast agents. Adzamli IK; Blau M Magn Reson Med; 1991 Jan; 17(1):141-8. PubMed ID: 2067390 [TBL] [Abstract][Full Text] [Related]
8. Dysprosium-DOTA-PAMAM dendrimers as macromolecular T2 contrast agents. Preparation and relaxometry. Bulte JW; Wu C; Brechbiel MW; Brooks RA; Vymazal J; Holla M; Frank JA Invest Radiol; 1998 Nov; 33(11):841-5. PubMed ID: 9818319 [TBL] [Abstract][Full Text] [Related]
9. Comparison of cardiovascular response to ionic and nonionic magnetic resonance susceptibility contrast agents. Saeed M; Li HT; Wendland MF; Knollmann F; Higgins CB Invest Radiol; 1994 Mar; 29(3):319-29. PubMed ID: 8175307 [TBL] [Abstract][Full Text] [Related]
10. Dy-complexes as high field T2 contrast agents: influence of water exchange rates. Vander Elst L; Zhang S; Sherry AD; Laurent S; Botteman F; Muller RN Acad Radiol; 2002 Aug; 9 Suppl 2():S297-9. PubMed ID: 12188253 [TBL] [Abstract][Full Text] [Related]
11. Dy-DTPA derivatives as relaxation agents for very high field MRI: the beneficial effect of slow water exchange on the transverse relaxivities. Vander Elst L; Roch A; Gillis P; Laurent S; Botteman F; Bulte JW; Muller RN Magn Reson Med; 2002 Jun; 47(6):1121-30. PubMed ID: 12111958 [TBL] [Abstract][Full Text] [Related]
12. Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Koenig SH; Kellar KE Magn Reson Med; 1995 Aug; 34(2):227-33. PubMed ID: 7476082 [TBL] [Abstract][Full Text] [Related]
13. Determination of dysprosium in monkey serum by inductively-coupled plasma atomic emission spectrometry (ICP-AES) after the administration of Sprodiamide Injection, a new contrast medium for magnetic resonance imaging. Lai JJ; Jamieson GC J Pharm Biomed Anal; 1993; 11(11-12):1129-34. PubMed ID: 8123724 [TBL] [Abstract][Full Text] [Related]
14. Relaxation of solvent protons by solute Gd3+-chelates revisited. Kellar KE; Henrichs PM; Spiller M; Koenig SH Magn Reson Med; 1997 May; 37(5):730-5. PubMed ID: 9126947 [TBL] [Abstract][Full Text] [Related]
15. In vivo stability and excretion of gadodiamide (GdDTPA-BMA), a hydrophilic gadolinium complex used as a contrast enhancing agent for magnetic resonance imaging. Normann PT; Hals PA Eur J Drug Metab Pharmacokinet; 1995; 20(4):307-13. PubMed ID: 8983938 [TBL] [Abstract][Full Text] [Related]
16. Detection and quantitation of gadolinium chelates in human serum and urine by high-performance liquid chromatography and post-column derivatization of gadolinium with Arsenazo III. Hvattum E; Normann PT; Jamieson GC; Lai JJ; Skotland T J Pharm Biomed Anal; 1995 Jun; 13(7):927-32. PubMed ID: 8562618 [TBL] [Abstract][Full Text] [Related]
18. Surface modification of PLGA nanospheres with Gd-DTPA and Gd-DOTA for high-relaxivity MRI contrast agents. Ratzinger G; Agrawal P; Körner W; Lonkai J; Sanders HM; Terreno E; Wirth M; Strijkers GJ; Nicolay K; Gabor F Biomaterials; 2010 Nov; 31(33):8716-23. PubMed ID: 20797782 [TBL] [Abstract][Full Text] [Related]
19. A benzene-core trinuclear GdIII complex: towards the optimization of relaxivity for MRI contrast agent applications at high magnetic field. Livramento JB; Helm L; Sour A; O'Neil C; Merbach AE; Tóth E Dalton Trans; 2008 Mar; (9):1195-202. PubMed ID: 18283380 [TBL] [Abstract][Full Text] [Related]
20. The importance of nuclear magnetic relaxation dispersion (NMRD) profiles in MRI contrast media development. Muller RN; Vander Elst L; Rinck PA; Vallet P; Maton F; Fischer H; Roch A; Van Haverbeke Y Invest Radiol; 1988 Sep; 23 Suppl 1():S229-31. PubMed ID: 3198350 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]