BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 10197536)

  • 1. Architecture of a K+ channel inner pore revealed by stoichiometric covalent modification.
    Lu T; Nguyen B; Zhang X; Yang J
    Neuron; 1999 Mar; 22(3):571-80. PubMed ID: 10197536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms for the time-dependent decay of inward currents through cloned Kir2.1 channels expressed in Xenopus oocytes.
    Shieh RC
    J Physiol; 2000 Jul; 526 Pt 2(Pt 2):241-52. PubMed ID: 10896715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel gating mechanism of polyamine block in the strong inward rectifier K channel Kir2.1.
    Lee JK; John SA; Weiss JN
    J Gen Physiol; 1999 Apr; 113(4):555-64. PubMed ID: 10102936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ser165 in the second transmembrane region of the Kir2.1 channel determines its susceptibility to blockade by intracellular Mg2+.
    Fujiwara Y; Kubo Y
    J Gen Physiol; 2002 Nov; 120(5):677-93. PubMed ID: 12407079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional roles of charged amino acid residues on the wall of the cytoplasmic pore of Kir2.1.
    Fujiwara Y; Kubo Y
    J Gen Physiol; 2006 Apr; 127(4):401-19. PubMed ID: 16533896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion permeation through a G-protein activated (GIRK1/GIRK5) inwardly rectifying potassium channel.
    Luchian T; Schreibmayer W
    Biochim Biophys Acta; 1998 Jan; 1368(2):167-70. PubMed ID: 9459595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel.
    Yang J; Jan YN; Jan LY
    Neuron; 1995 May; 14(5):1047-54. PubMed ID: 7748552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A difference in inward rectification and polyamine block and permeation between the Kir2.1 and Kir3.1/Kir3.4 K+ channels.
    Makary SM; Claydon TW; Enkvetchakul D; Nichols CG; Boyett MR
    J Physiol; 2005 Nov; 568(Pt 3):749-66. PubMed ID: 16109731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of rectification in inward-rectifier K+ channels.
    Guo D; Ramu Y; Klem AM; Lu Z
    J Gen Physiol; 2003 Apr; 121(4):261-75. PubMed ID: 12642596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional architecture of the inner pore of a voltage-gated Ca2+ channel.
    Zhen XG; Xie C; Fitzmaurice A; Schoonover CE; Orenstein ET; Yang J
    J Gen Physiol; 2005 Sep; 126(3):193-204. PubMed ID: 16129770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K+ channel.
    Kubo Y; Murata Y
    J Physiol; 2001 Mar; 531(Pt 3):645-60. PubMed ID: 11251047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for sequential ion-binding loci along the inner pore of the IRK1 inward-rectifier K+ channel.
    Shin HG; Xu Y; Lu Z
    J Gen Physiol; 2005 Aug; 126(2):123-35. PubMed ID: 16043774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of inward rectification of potassium channels: "long-pore plugging" by cytoplasmic polyamines.
    Lopatin AN; Makhina EN; Nichols CG
    J Gen Physiol; 1995 Nov; 106(5):923-55. PubMed ID: 8648298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permeant ion-dependent changes in gating of Kir2.1 inward rectifier potassium channels.
    Lu T; Wu L; Xiao J; Yang J
    J Gen Physiol; 2001 Nov; 118(5):509-22. PubMed ID: 11696609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the subunit stoichiometry of an inwardly rectifying potassium channel.
    Yang J; Jan YN; Jan LY
    Neuron; 1995 Dec; 15(6):1441-7. PubMed ID: 8845166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of a negatively charged residue in the hydrophobic domain of the IRK1 inwardly rectifying K+ channel to K(+)-selective permeation.
    Reuveny E; Jan YN; Jan LY
    Biophys J; 1996 Feb; 70(2):754-61. PubMed ID: 8789092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inward rectifier potassium channel Kir 2.3 is inhibited by internal sulfhydryl modification.
    Radeke CM; Conti LR; Vandenberg CA
    Neuroreport; 1999 Nov; 10(16):3277-82. PubMed ID: 10599834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification.
    Pegan S; Arrabit C; Zhou W; Kwiatkowski W; Collins A; Slesinger PA; Choe S
    Nat Neurosci; 2005 Mar; 8(3):279-87. PubMed ID: 15723059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pore helix is involved in stabilizing the open state of inwardly rectifying K+ channels.
    Alagem N; Yesylevskyy S; Reuveny E
    Biophys J; 2003 Jul; 85(1):300-12. PubMed ID: 12829485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A conserved arginine residue in the pore region of an inward rectifier K channel (IRK1) as an external barrier for cationic blockers.
    Sabirov RZ; Tominaga T; Miwa A; Okada Y; Oiki S
    J Gen Physiol; 1997 Dec; 110(6):665-77. PubMed ID: 9382895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.