BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 10197995)

  • 1. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli.
    de Graef MR; Alexeeva S; Snoep JL; Teixeira de Mattos MJ
    J Bacteriol; 1999 Apr; 181(8):2351-7. PubMed ID: 10197995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions.
    Alexeeva S; Hellingwerf KJ; Teixeira de Mattos MJ
    J Bacteriol; 2003 Jan; 185(1):204-9. PubMed ID: 12486057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyruvate formate-lyase is not essential for nitrate respiration by Escherichia coli.
    Kaiser M; Sawers G
    FEMS Microbiol Lett; 1994 Apr; 117(2):163-8. PubMed ID: 8181719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyruvate catabolism during transient state conditions in chemostat cultures of Enterococcus faecalis NCTC 775: importance of internal pyruvate concentrations and NADH/NAD+ ratios.
    Snoep JL; de Graef MR; Teixeira de Mattos MJ; Neijssel OM
    J Gen Microbiol; 1992 Oct; 138(10):2015-20. PubMed ID: 1479339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli.
    Alexeeva S; de Kort B; Sawers G; Hellingwerf KJ; de Mattos MJ
    J Bacteriol; 2000 Sep; 182(17):4934-40. PubMed ID: 10940038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in sensitivity to NADH of purified pyruvate dehydrogenase complexes of Enterococcus faecalis, Lactococcus lactis, Azotobacter vinelandii and Escherichia coli: implications for their activity in vivo.
    Snoep JL; de Graef MR; Westphal AH; de Kok A; Teixeira de Mattos MJ; Neijssel OM
    FEMS Microbiol Lett; 1993 Dec; 114(3):279-83. PubMed ID: 8288104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures.
    BerrĂ­os-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):230-7. PubMed ID: 12616692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyruvate dehydrogenase complex regulator (PdhR) gene deletion boosts glucose metabolism in Escherichia coli under oxygen-limited culture conditions.
    Maeda S; Shimizu K; Kihira C; Iwabu Y; Kato R; Sugimoto M; Fukiya S; Wada M; Yokota A
    J Biosci Bioeng; 2017 Apr; 123(4):437-443. PubMed ID: 28007420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doubling the catabolic reducing power (NADH) output of Escherichia coli fermentation for production of reduced products.
    Zhou S; Iverson AG; Grayburn WS
    Biotechnol Prog; 2010; 26(1):45-51. PubMed ID: 19862803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of pyruvate dehydrogenase in product formation in pyruvate-limited anaerobic chemostat cultures of Enterococcus faecalis NCTC 775.
    Snoep JL; Teixeira de Mattos MJ; Postma PW; Neijssel OM
    Arch Microbiol; 1990; 154(1):50-5. PubMed ID: 2118752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyruvate formate-lyase is essential for fumarate-independent anaerobic glycerol utilization in the Enterococcus faecalis strain W11.
    Doi Y; Ikegami Y
    J Bacteriol; 2014 Jul; 196(13):2472-80. PubMed ID: 24769696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the Growth and Metabolites of a Pyruvate Dehydrogenase Complex- Deficient
    Xu D; Jia Z; Zhang L; Fu S; Gong H
    J Microbiol Biotechnol; 2020 May; 30(5):753-761. PubMed ID: 32482942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase.
    BerrĂ­os-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):217-29. PubMed ID: 12616691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino-terminal residues 1-45 of the Escherichia coli pyruvate dehydrogenase complex E1 subunit interact with the E2 subunit and are required for activity of the complex but not for reductive acetylation of the E2 subunit.
    Park YH; Wei W; Zhou L; Nemeria N; Jordan F
    Biochemistry; 2004 Nov; 43(44):14037-46. PubMed ID: 15518552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of Escherichia coli fumarate reductase (frdABCD) operon expression by respiratory electron acceptors and the fnr gene product.
    Jones HM; Gunsalus RP
    J Bacteriol; 1987 Jul; 169(7):3340-9. PubMed ID: 3298218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interaction between lipoamide dehydrogenase and the peripheral-component-binding domain from the Azotobacter vinelandii pyruvate dehydrogenase complex.
    Westphal AH; Fabisz-Kijowska A; Kester H; Obels PP; de Kok A
    Eur J Biochem; 1995 Dec; 234(3):861-70. PubMed ID: 8575446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid transport in membrane vesicles of obligately anaerobic Veillonella alcalescens.
    Konings WN; Boonstra J; De Vries W
    J Bacteriol; 1975 Apr; 122(1):245-9. PubMed ID: 164433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression and purification of the dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase subunits of the Escherichia coli pyruvate dehydrogenase multienzyme complex: a mass spectrometric assay for reductive acetylation of dihydrolipoamide acetyltransferase.
    Wei W; Li H; Nemeria N; Jordan F
    Protein Expr Purif; 2003 Mar; 28(1):140-50. PubMed ID: 12651118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic analysis of wild-type Escherichia coli and a pyruvate dehydrogenase complex (PDHC)-deficient derivative reveals the role of PDHC in the fermentative metabolism of glucose.
    Murarka A; Clomburg JM; Moran S; Shanks JV; Gonzalez R
    J Biol Chem; 2010 Oct; 285(41):31548-58. PubMed ID: 20667837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: IV. Enzymes and fluxes of pyruvate metabolism.
    Menzel K; Ahrens K; Zeng A; Deckwer W
    Biotechnol Bioeng; 1998 Dec; 60(5):617-26. PubMed ID: 10099470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.