BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 10197995)

  • 21. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Requirement for the proton-pumping NADH dehydrogenase I of Escherichia coli in respiration of NADH to fumarate and its bioenergetic implications.
    Tran QH; Bongaerts J; Vlad D; Unden G
    Eur J Biochem; 1997 Feb; 244(1):155-60. PubMed ID: 9063459
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose.
    Hasona A; Kim Y; Healy FG; Ingram LO; Shanmugam KT
    J Bacteriol; 2004 Nov; 186(22):7593-600. PubMed ID: 15516572
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic flux analysis of wild-type Escherichia coli and mutants deficient in pyruvate-dissimilating enzymes during the fermentative metabolism of glucuronate.
    Murarka A; Clomburg JM; Gonzalez R
    Microbiology (Reading); 2010 Jun; 156(Pt 6):1860-1872. PubMed ID: 20167619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic flux control at the pyruvate node in an anaerobic Escherichia coli strain with an active pyruvate dehydrogenase.
    Wang Q; Ou MS; Kim Y; Ingram LO; Shanmugam KT
    Appl Environ Microbiol; 2010 Apr; 76(7):2107-14. PubMed ID: 20118372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Anaerobic synthesis of succinic acid by Escherichia coli strains with activated NAD+ reducing pyruvate dehydrogenase complex].
    Skorokhodova AIu; Gulevich AIu; Morzhakova AA; Shakulov RS; Debabov VG
    Prikl Biokhim Mikrobiol; 2011; 47(4):415-23. PubMed ID: 21950115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12.
    Kim Y; Ingram LO; Shanmugam KT
    J Bacteriol; 2008 Jun; 190(11):3851-8. PubMed ID: 18375566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of NAD in regulating the adhE gene of Escherichia coli.
    Leonardo MR; Dailly Y; Clark DP
    J Bacteriol; 1996 Oct; 178(20):6013-8. PubMed ID: 8830700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD+ ratio, and the distribution of metabolites in Escherichia coli.
    BerrĂ­os-Rivera SJ; San KY; Bennett GN
    Metab Eng; 2002 Jul; 4(3):238-47. PubMed ID: 12616693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses.
    Levanon SS; San KY; Bennett GN
    Biotechnol Bioeng; 2005 Mar; 89(5):556-64. PubMed ID: 15669087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Altering the sensitivity of Escherichia coli pyruvate dehydrogenase complex to NADH inhibition by structure-guided design.
    Wang X; Wang A; Zhu L; Hua D; Qin J
    Enzyme Microb Technol; 2018 Dec; 119():52-57. PubMed ID: 30243387
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relationship between activation state of pyruvate dehydrogenase complex and rate of pyruvate oxidation in isolated cerebro-cortical mitochondria: effects of potassium ions and adenine nucleotides.
    Lai JC; Sheu KF
    J Neurochem; 1985 Dec; 45(6):1861-8. PubMed ID: 3840524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors.
    Unden G; Bongaerts J
    Biochim Biophys Acta; 1997 Jul; 1320(3):217-34. PubMed ID: 9230919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The frdR gene of Escherichia coli globally regulates several operons involved in anaerobic growth in response to nitrate.
    Kalman LV; Gunsalus RP
    J Bacteriol; 1988 Feb; 170(2):623-9. PubMed ID: 3276662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Occurrence of oxygen-sensitive, NADP+-dependent pyruvate dehydrogenase in mitochondria of Euglena gracilis.
    Inui H; Miyatake K; Nakano Y; Kitaoka S
    J Biochem; 1984 Sep; 96(3):931-4. PubMed ID: 6438078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energy-linked regulation of glucose and pyruvate oxidation in isolated perfused rat heart. Role of pyruvate dehydrogenase.
    Hiltunen JK; Hassinen IE
    Biochim Biophys Acta; 1976 Aug; 440(2):377-90. PubMed ID: 182244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth.
    Nakano MM; Dailly YP; Zuber P; Clark DP
    J Bacteriol; 1997 Nov; 179(21):6749-55. PubMed ID: 9352926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redirection of pyruvate catabolism in Lactococcus lactis by selection of mutants with additional growth requirements.
    Henriksen CM; Nilsson D
    Appl Microbiol Biotechnol; 2001 Sep; 56(5-6):767-75. PubMed ID: 11601628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli.
    Zhu J; Shimizu K
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):367-75. PubMed ID: 14673546
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation and characterisation of the pyruvate dehydrogenase complex of anaerobically grown Enterococcus faecalis NCTC 775.
    Snoep JL; Westphal AH; Benen JA; Teixeira de Mattos MJ; Neijssel OM; de Kok A
    Eur J Biochem; 1992 Jan; 203(1-2):245-50. PubMed ID: 1730230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.