BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 10198186)

  • 1. Mitochondrial oxidative phosphorylation in heart from stressed cardiomyopathic hamsters.
    Doliba NM; Doliba NM; Chang Q; Babsky AM; Wroblewski K; Natelson BH; Osbakken MD
    J Mol Cell Cardiol; 1999 Mar; 31(3):543-53. PubMed ID: 10198186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impairment of mitochondrial and sarcoplasmic reticular functions during the development of heart failure in cardiomyopathic (UM-X7.1) hamsters.
    Panagia V; Lee SL; Singh A; Pierce GN; Jasmin G; Dhalla NS
    Can J Cardiol; 1986; 2(4):236-47. PubMed ID: 2945628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The creatine kinase system and cardiomyopathy.
    Khuchua ZA; Vasiljeva EV; Clark JF; Korchazhkina OV; Branishte T; Kapelko VI; Kuznetsov AV; Ventura-Clapier R; Steinschneider AYa ; Lakomkin VL
    Am J Cardiovasc Pathol; 1992; 4(3):223-34. PubMed ID: 1298299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is there a calcium-caused defect of oxidative phosphorylation in cardiomyopathic hamster hearts?
    Wrogemann K; Nylen E; Blanchaer MC
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 12():351-7. PubMed ID: 1031988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiotensin II-dependent vascular alterations in young cardiomyopathic hamsters: role for oxidative stress.
    Escobales N; Crespo MJ
    Vascul Pharmacol; 2006 Jan; 44(1):22-8. PubMed ID: 16301003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of stress-induced sudden death in cardiomyopathic hamsters.
    Matsuoka N; Arakawa H; Kodama H; Yamaguchi I
    J Pharmacol Exp Ther; 1998 Jan; 284(1):125-35. PubMed ID: 9435170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress triggers different pathophysiological mechanisms in younger and older cardiomyopathic hamsters.
    Chang Q; Natelson BH; Ottenweller JE; Conway RS
    Cardiovasc Res; 1995 Dec; 30(6):985-91. PubMed ID: 8746215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic abnormalities and differential responses to stress associated with hamster cardiomyopathy.
    Doliba N; Chang Q; Doliba N; Babsky A; Wroblewski K; Natelson B; Osbakken M
    Proc Soc Exp Biol Med; 1998 Oct; 219(1):48-56. PubMed ID: 9751222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hereditary polymyopathy and cardiomyopathy in the Syrian hamster. II. Development of heart necrotic changes in relation to defective mitochondrial function.
    Proschek L; Jasmin G
    Muscle Nerve; 1982 Jan; 5(1):26-32. PubMed ID: 7057802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional state of myofibrils, mitochondria and bound creatine kinase in skinned ventricular fibers of cardiomyopathic hamsters.
    Veksler VI; Ventura-Clapier R; Lechene P; Vassort G
    J Mol Cell Cardiol; 1988 Apr; 20(4):329-42. PubMed ID: 3262769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the role of mitochondria in the hereditary cardiomyopathy of the Syrian hamster.
    Wrogemann K; Blanchaer MC; Thakar JH; Mezon BJ
    Recent Adv Stud Cardiac Struct Metab; 1975; 6():231-41. PubMed ID: 172988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depletion of energy reserve via the creatine kinase reaction during the evolution of heart failure in cardiomyopathic hamsters.
    Tian R; Nascimben L; Kaddurah-Daouk R; Ingwall JS
    J Mol Cell Cardiol; 1996 Apr; 28(4):755-65. PubMed ID: 8732503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in cyclic nucleotide phosphodiesterase activity and calmodulin concentration in heart muscle of cardiomyopathic hamsters.
    Masunaga R; Nagasaka A; Sawai Y; Hayakawa N; Nakai A; Hotta K; Kato Y; Hishida H; Takahashi H; Naka M; Shimada Y; Tanaka T; Hidaka H; Itoh M
    J Mol Cell Cardiol; 2004 Sep; 37(3):767-74. PubMed ID: 15350849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Abnormalities in mitochondrial creatine kinase activity in cardiomyopathic hamsters].
    Matsuo H
    Hokkaido Igaku Zasshi; 1991 May; 66(3):348-55. PubMed ID: 1885160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Energy metabolism and myocardial ultrastructure in autoimmune cardiomyopathy].
    Popovich MI; Severin VV; Sharov VG
    Biull Eksp Biol Med; 1986 Dec; 102(12):671-4. PubMed ID: 3801617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of NH4Cl-induced systemic metabolic acidosis on kidney mitochondrial coupling and calcium transport in rats.
    Bento LM; Fagian MM; Vercesi AE; Gontijo JA
    Nephrol Dial Transplant; 2007 Oct; 22(10):2817-23. PubMed ID: 17556421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related changes in cardiac mitochondrial energetics under the influence of calcium in rat.
    Guarnieri C; Muscari C; Finelli C; Caldarera CM
    Cardioscience; 1993 Jun; 4(2):117-20. PubMed ID: 8347791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disturbed myocardial calcium metabolism: a possible pathogenetic factor in the hereditary cardiomyopathy of the Syrian hamster.
    Lossnitzer K; Janke J; Hein B; Stauch M; Fleckenstein A
    Recent Adv Stud Cardiac Struct Metab; 1975; 6():207-17. PubMed ID: 1197882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between AT1 and alpha1-adrenergic receptors in cardiomyopathic hamsters.
    Crespo MJ
    J Card Fail; 2000 Sep; 6(3):257-63. PubMed ID: 10997753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opening of potassium channels protects mitochondrial function from calcium overload.
    Crestanello JA; Doliba NM; Babsky AM; Doliba NM; Niibori K; Osbakken MD; Whitman GJ
    J Surg Res; 2000 Dec; 94(2):116-23. PubMed ID: 11104651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.