BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10198530)

  • 1. Investigation into the effects of haematocrit and temperature on the resistivity of mammalian blood using a four-electrode probe.
    Tjin SC; Xie T; Lam YZ
    Med Biol Eng Comput; 1998 Jul; 36(4):467-70. PubMed ID: 10198530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The changes in blood resistivity with haematocrit and temperature.
    Mohapatra SN; Hill DW
    Eur J Intensive Care Med; 1975 Dec; 1(4):153-62. PubMed ID: 1218537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectric properties of blood: an investigation of haematocrit dependence.
    Jaspard F; Nadi M; Rouane A
    Physiol Meas; 2003 Feb; 24(1):137-47. PubMed ID: 12636192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical impedance and haematocrit of human blood with various anticoagulants.
    Zhao TX
    Physiol Meas; 1993 Aug; 14(3):299-307. PubMed ID: 8401269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of haematocrit on the resistivity of human blood at 37 degrees C and 100 kHz.
    Hill DW; Thompson FD
    Med Biol Eng; 1975 Mar; 13(2):182-6. PubMed ID: 1195807
    [No Abstract]   [Full Text] [Related]  

  • 6. Error analysis of tissue resistivity measurement.
    Tsai JZ; Will JA; Hubbard-Van Stelle S; Cao H; Tungjitkusolmun S; Choy YB; Haemmerich D; Vorperian VR; Webster JG
    IEEE Trans Biomed Eng; 2002 May; 49(5):484-94. PubMed ID: 12002180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-vivo measurement of swine myocardial resistivity.
    Tsai JZ; Will JA; Hubbard-Van Stelle S; Cao H; Tungjitkusolmun S; Choy YB; Haemmerich D; Vorperian VR; Webster JG
    IEEE Trans Biomed Eng; 2002 May; 49(5):472-83. PubMed ID: 12002179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioelectrical impedance techniques in medicine. Part I: Bioimpedance measurement. First section: general concepts.
    Valentinuzzi ME
    Crit Rev Biomed Eng; 1996; 24(4-6):223-55. PubMed ID: 9196883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catheter-based impedance measurements in the right atrium for continuously monitoring hematocrit and estimating blood viscosity changes; an in vivo feasibility study in swine.
    Pop GA; Chang ZY; Slager CJ; Kooij BJ; van Deel ED; Moraru L; Quak J; Meijer GC; Duncker DJ
    Biosens Bioelectron; 2004 Jul; 19(12):1685-93. PubMed ID: 15142603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood resistivity and its implications for the calculation of cardiac output by the thoracic electrical impedance technique.
    Mohapatra SN; Costeloe KL; Hill DW
    Intensive Care Med; 1977 Aug; 3(2):63-7. PubMed ID: 893775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous measurements by impedance of haematocrit and plasma volume variations during dialysis.
    Maasrani M; Jaffrin MY; Boudailliez B
    Med Biol Eng Comput; 1997 May; 35(3):167-71. PubMed ID: 9246846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific impedance of canine blood.
    Ackmann JJ; Seitz MA; Dawson CA; Hause LL
    Ann Biomed Eng; 1996; 24(1):58-66. PubMed ID: 8669718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An electronic method for rapid measurement of haematocrit in blood samples.
    Cha K; Faris RG; Brown EF; Wilmore DW
    Physiol Meas; 1994 May; 15(2):129-37. PubMed ID: 8081191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the optimum level of electrode placement for the evaluation of absolute lung resistivity with the Mk3.5 EIT system.
    Nebuya S; Noshiro M; Yonemoto A; Tateno S; Brown BH; Smallwood RH; Milnes P
    Physiol Meas; 2006 May; 27(5):S129-37. PubMed ID: 16636404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impedance cardiography for estimating cardiac output during submaximal and maximal work.
    Kobayashi Y; Andoh Y; Fujinami T; Nakayama K; Takada K; Takeuchi T; Okamoto M
    J Appl Physiol Respir Environ Exerc Physiol; 1978 Sep; 45(3):459-62. PubMed ID: 701133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A feasibility study for evaluation of mechanical properties of articular cartilage with a two-electrode electrical impedance method.
    Morita Y; Kondo H; Tomita N; Suzuki S
    J Orthop Sci; 2012 May; 17(3):272-80. PubMed ID: 22427018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of electrode-tissue contact on radiofrequency lesion generation.
    Avitall B; Mughal K; Hare J; Helms R; Krum D
    Pacing Clin Electrophysiol; 1997 Dec; 20(12 Pt 1):2899-910. PubMed ID: 9455749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A piecewise function of resistivity of liver: determining parameters with finite element analysis of radiofrequency ablation.
    Possebon R; Jiang Y; Mulier S; Wang C; Chen F; Feng Y; Ni Y
    Med Biol Eng Comput; 2018 Mar; 56(3):385-394. PubMed ID: 28766106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientation and deformation of erythrocytes in flowing blood.
    Fujii M; Nakajima K; Sakamoto K; Kanai H
    Ann N Y Acad Sci; 1999 Apr; 873():245-61. PubMed ID: 10372174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometric effects on resistivity measurements with four-electrode probes in isotropic and anisotropic tissues.
    Wang Y; Schimpf PH; Haynor DR; Kim Y
    IEEE Trans Biomed Eng; 1998 Jul; 45(7):877-84. PubMed ID: 9644896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.