These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 10198533)

  • 21. Complex and frequency-dependent compliance of viscoelastic windkessel resolves contradictions in elastic windkessels.
    Burattini R; Natalucci S
    Med Eng Phys; 1998 Oct; 20(7):502-14. PubMed ID: 9832026
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stroke volume effect of changing arterial input impedance over selected frequency ranges.
    Sunagawa K; Maughan WL; Sagawa K
    Am J Physiol; 1985 Apr; 248(4 Pt 2):H477-84. PubMed ID: 3985173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exponentially tapered T-tube model in the characterization of arterial non-uniformity.
    Chang KC; Kuo TS
    J Theor Biol; 1996 Nov; 183(1):35-46. PubMed ID: 8959109
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of total arterial compliance and peripheral resistance in the determination of systolic and diastolic aortic pressure.
    Stergiopulos N; Westerhof N
    Pathol Biol (Paris); 1999 Jun; 47(6):641-7. PubMed ID: 10472075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficacy of using mean arterial blood pressure sequence for three-element Windkessel model estimation.
    Gehalot P; Zhang R; Mathew A; Behbehani K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1379-82. PubMed ID: 17946889
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time-domain formulation of asymmetric T-tube model of arterial system.
    Campbell KB; Burattini R; Bell DL; Kirkpatrick RD; Knowlen GG
    Am J Physiol; 1990 Jun; 258(6 Pt 2):H1761-74. PubMed ID: 2360669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of linear and nonlinear formulations of the three-element windkessel model.
    Fogliardi R; Di Donfrancesco M; Burattini R
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2661-8. PubMed ID: 8997329
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-Element Fractional-Order Windkessel Model to Assess the Arterial Input Impedance.
    Bahloul MA; Laleg Kirati TM
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5018-5023. PubMed ID: 31946987
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A hybrid Windkessel-Womersley model for blood flow in arteries.
    Aboelkassem Y; Virag Z
    J Theor Biol; 2019 Feb; 462():499-513. PubMed ID: 30528559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydraulic input impedance measurements in physical models of the arterial wall.
    Papageorgiou GL; Jones NB
    J Biomed Eng; 1989 Nov; 11(6):471-7. PubMed ID: 2811346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effective length of the arterial circulation determined in the dog by aid of a model of the systemic input impedance.
    Burattini R; Di Carlo S
    IEEE Trans Biomed Eng; 1988 Jan; 35(1):53-61. PubMed ID: 3338812
    [No Abstract]   [Full Text] [Related]  

  • 32. Fast estimation of arterial vascular parameters for transient and steady beats with application to hemodynamic state under variant gravitational conditions.
    Essler S; Schroeder MJ; Phaniraj V; Koenig SC; Latham RD; Ewert D
    Ann Biomed Eng; 1999; 27(4):486-97. PubMed ID: 10468233
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Apparent arterial compliance.
    Quick CM; Berger DS; Noordergraaf A
    Am J Physiol; 1998 Apr; 274(4):H1393-403. PubMed ID: 9575945
    [TBL] [Abstract][Full Text] [Related]  

  • 34. First- and third-order models for determining arterial compliance.
    Finkelstein SM; Cohn JN
    J Hypertens Suppl; 1992 Aug; 10(6):S11-4. PubMed ID: 1432309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A simple method of obtaining quasi-continuous frequency spectra of the input impedance of arterial systems.
    Pasch T; Bauer RD
    Pflugers Arch; 1971; 330(3):271-6. PubMed ID: 5168424
    [No Abstract]   [Full Text] [Related]  

  • 36. Simulation of arterial hemodynamics after partial prosthetic replacement of the aorta.
    Bauernschmitt R; Schulz S; Schwarzhaupt A; Kiencke U; Vahl CF; Lange R; Hagl S
    Ann Thorac Surg; 1999 Mar; 67(3):676-82. PubMed ID: 10215210
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A simple algorithm for defining the mean cardiac cycle of aortic flow and pressure during steady state.
    Burattini R; Fioretti S; Jetto L
    Comput Biomed Res; 1985 Aug; 18(4):303-12. PubMed ID: 3840069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of central and peripheral changes on the hydraulic input impedance of the systemic arterial tree.
    Westerhof N; Elzinga G; van den Bos GC
    Med Biol Eng; 1973 Nov; 11(6):710-23. PubMed ID: 4787930
    [No Abstract]   [Full Text] [Related]  

  • 39. Three- and four-element Windkessel models: assessment of their fitting performance in a large cohort of healthy middle-aged individuals.
    Segers P; Rietzschel ER; De Buyzere ML; Stergiopulos N; Westerhof N; Van Bortel LM; Gillebert T; Verdonck PR
    Proc Inst Mech Eng H; 2008 May; 222(4):417-28. PubMed ID: 18595354
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The arterial system pressure-volume loop.
    Quick CM; Mohiuddin MW; Laine GA; Noordergraaf A
    Physiol Meas; 2005 Dec; 26(6):N29-35. PubMed ID: 16311438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.