These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 10198718)

  • 1. Ex vivo evaluation of a roller screw linear muscle actuator for an implantable ventricular assist device using trained and untrained latissimus dorsi muscles.
    Sasaki Y; Chikazawa G; Nogawa M; Nishida H; Koyanagi H; Takatani S
    Artif Organs; 1999 Mar; 23(3):262-7. PubMed ID: 10198718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double chamber ventricular assist device with a roller screw linear actuator driven by left and right latissimus dorsi muscles.
    Takatani S; Takami Y; Nakazawa T; Jacobs G; Nose Y
    ASAIO J; 1995; 41(3):M475-80. PubMed ID: 8573850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of the biomechanical performance of trained and untrained skeletal muscle.
    Petrou M; Bowles C; Yacoub M
    Cardiovasc Res; 1997 Mar; 33(3):583-92. PubMed ID: 9093528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo performance of a muscle-powered drive system for implantable blood pumps.
    Trumble DR; Melvin DB; Dean DA; Magovern JA
    ASAIO J; 2008; 54(3):227-32. PubMed ID: 18496270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustained skeletal muscle power for cardiac assist devices: implications of metabolic constraints.
    Reichenbach SH; Egrie GD; Marinache SM; Gustafson KJ; Farrar DJ; Hill JD
    ASAIO J; 2001; 47(5):541-7. PubMed ID: 11575834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is it possible to perform immediate cardiac assist using untrained latissimus dorsi muscle in a work-rest regimen?
    Chekanov VS; Tchekanov GV; Rieder MA; Smith LM; Jacobs GB; McConchie S; Christensen CW; Schmidt DH
    ASAIO J; 1995; 41(3):M489-94. PubMed ID: 8573853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The muscle-powered dual-chamber counterpulsator: rheologically superior implantable cardiac assist device.
    Kochamba G; Desrosiers C; Dewar M; Chiu RC
    Ann Thorac Surg; 1988 Jun; 45(6):620-5. PubMed ID: 3259863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A compressive type skeletal muscle pump as a biomechanical energy source.
    Mizuhara H; Oda T; Koshiji T; Ikeda T; Nishimura K; Nomoto S; Matsuda K; Tsutsui N; Kanda K; Ban T
    ASAIO J; 1996; 42(5):M637-41. PubMed ID: 8944958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ergometric studies of untrained skeletal muscle demonstrate feasibility of muscle-powered cardiac assistance.
    Trumble DR; Magovern JA
    J Appl Physiol (1985); 1994 Oct; 77(4):2036-41. PubMed ID: 7836234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new skeletal muscle linear-pull energy convertor as a power source for prosthetic circulatory support devices [corrected].
    Farrar DJ; Hill JD
    J Heart Lung Transplant; 1992; 11(5):S341-50. PubMed ID: 1420227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passive characteristics of conditioned skeletal muscle for ventricular assistance.
    Reichenbach SH; Farrar DJ; Hill JD
    ASAIO J; 1999; 45(4):344-9. PubMed ID: 10445743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clenbuterol increases stroke power and contractile speed of skeletal muscle for cardiac assist.
    Petrou M; Clarke S; Morrison K; Bowles C; Dunn M; Yacoub M
    Circulation; 1999 Feb; 99(5):713-20. PubMed ID: 9950671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional properties of conditioned skeletal muscle: implications for muscle-powered cardiac assist.
    Trumble DR; LaFramboise WA; Duan C; Magovern JA
    Am J Physiol; 1997 Aug; 273(2 Pt 1):C588-97. PubMed ID: 9277356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a compressive-type skeletal muscle pump for cardiac assistance.
    Mizuhara H; Koshiji T; Nishimura K; Nomoto S; Matsuda K; Ban T
    Ann Thorac Surg; 1999 Jan; 67(1):105-11. PubMed ID: 10086533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of canine skeletal muscle power from twitches and tetanic contractions in untrained muscle: a preliminary report.
    Tacker WA; Geddes LA; Janas W; Babbs CF; Badylak SF
    J Card Surg; 1991 Mar; 6(1 Suppl):245-51. PubMed ID: 1839665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear performance characteristics of latissimus dorsi muscle: potential for cardiac assistance.
    Gustafson KJ; Guilbeau EJ; Sweeney JD
    ASAIO J; 2003; 49(5):572-7. PubMed ID: 14524567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical advantage of skeletal muscle as a cardiac assist power source.
    Farrar DJ; Reichenbach SH; Hill JD
    ASAIO J; 1995; 41(3):M481-4. PubMed ID: 8573851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and work optimization of skeletal muscle as a VAD power source.
    Reichenbach SH; Farrar DJ
    ASAIO J; 1994; 40(3):M359-64. PubMed ID: 8555539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implantable extra-aortic balloon assist powered by transformed fatigue-resistant skeletal muscle.
    Chiu RC; Walsh GL; Dewar ML; De Simon JH; Khalafalla AS; Ianuzzo D
    J Thorac Cardiovasc Surg; 1987 Nov; 94(5):694-701. PubMed ID: 3669697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Power of the fatigue resistant in situ latissimus dorsi muscle.
    Araki K; Nakatani T; Toda K; Taenaka Y; Tatsumi E; Masuzawa T; Baba Y; Yagura A; Wakisaka Y; Eya K
    ASAIO J; 1995; 41(3):M768-71. PubMed ID: 8573910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.