BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10198719)

  • 1. A future prediction type artificial heart system.
    Yambe T; Tanizuka N; Tanaka A; Yoshizawa M; Abe K; Takeda H; Tabayashi K; Nitta S
    Artif Organs; 1999 Mar; 23(3):268-73. PubMed ID: 10198719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of the following cardiac output using sympathetic tone and hemodynamics for the control of a total artificial heart.
    Yambe T; Nitta S; Katahira Y; Sonobe T; Naganuma S; Akiho H; Kakinuma Y; Izutzu K; Kikuchi Y; Naganuma T
    Int J Artif Organs; 1992 Oct; 15(10):606-10. PubMed ID: 1428209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous monitoring of autonomic nerve information for the control of an artificial heart.
    Yambe T; Nomura T; Nanka SS; Kobayashi S; Tanaka A; Yoshizawa M; Abe K; Tabayashi K; Takeda H; Nitta S
    ASAIO J; 1998; 44(5):M696-9. PubMed ID: 9804524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vagal nerve activity recording in the awake condition for the control of an artificial heart system.
    Yambe T; Nanka S; Kobayashi S; Tanaka A; Yoshizawa M; Abe K; Tabayashi K; Takeda H; Nitta S
    Artif Organs; 1999 Jun; 23(6):529-31. PubMed ID: 10392279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haemodynamic responses to stimulation of the cardiac autonomic nerves in the anaesthetized cat with closed chest.
    Barnes RJ; Bower EA; Rink TJ
    J Physiol; 1980 Feb; 299():55-73. PubMed ID: 7381778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recording vagal nerve activity for the control of an artificial heart system.
    Yambe T; Nanka SS; Shiraishi Y; Tanaka A; Yoshizawa M; Abe K; Tabayashi K; Takeda H; Nitta S
    ASAIO J; 2003; 49(6):698-700. PubMed ID: 14655737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vagal nerve activity and the high frequency peak of the heart rate variability.
    Yambe T; Nanka S; Kobayashi S; Tanaka A; Yoshizawa M; Abe K; Tabayashi K; Takeda H; Nitta S
    Int J Artif Organs; 1999 May; 22(5):324-8. PubMed ID: 10467931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the total artificial heart control system.
    Yambe T; Nitta S; Katahira Y; Sonobe T; Naganuma S; Akiho H; Kakinuma Y; Matsuzawa H; Izutsu K; Kikuchi Y
    Sci Rep Res Inst Tohoku Univ Med; 1991 Jul; 38(1):29-34. PubMed ID: 1749925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of halothane on the interactions between myocardial contractility, aortic impedance, and left ventricular performance. IV. Haemodynamic responses to vagus nerve stimulation.
    Gersh BJ; Prys-Roberts C
    Br J Anaesth; 1972 Nov; 44(11):1133-8. PubMed ID: 4647107
    [No Abstract]   [Full Text] [Related]  

  • 10. Autonomic nervous control of heart rate: sympathetic-parasympathetic interactions and age related differences.
    Mace SE; Levy MN
    Cardiovasc Res; 1983 Sep; 17(9):547-52. PubMed ID: 6627275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efferent discharges of sympathetic and parasympathetic nerve fibers during increased intracranial pressure in anesthetized cats in the absence and presence of pressor response.
    Matsuura S; Sakamoto H; Hayashida Y; Kuno M
    Brain Res; 1984 Jul; 305(2):291-301. PubMed ID: 6744068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional significance of coactivation of vagal and sympathetic cardiac nerves.
    Koizumi K; Terui N; Kollai M; Brooks CM
    Proc Natl Acad Sci U S A; 1982 Mar; 79(6):2116-20. PubMed ID: 6952259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of altered autonomic control on left ventricular function in conscious dogs.
    Bishop VS; Horwitz LD
    Am J Physiol; 1971 Nov; 221(5):1278-82. PubMed ID: 4399395
    [No Abstract]   [Full Text] [Related]  

  • 14. Afferent innervation of the heart and great vessels: a comparison of the vagal and sympathetic components.
    Coleridge HM; Coleridge JC; Kidd C
    Acta Physiol Pol; 1978; 29 Suppl 17():55-79. PubMed ID: 751463
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of sympathetic modulation and sympatho-vagal interaction on heart rate variability in anaesthetized dogs.
    Hedman AE; Tahvanainen KU; Hartikainen JE; Hakumäki MO
    Acta Physiol Scand; 1995 Oct; 155(2):205-14. PubMed ID: 8669293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sympathetic and periodic vagal influences on antegrade and retrograde conduction through the canine atrioventricular node.
    Wallick DW; Stuesse SL; Masuda Y
    Circulation; 1986 Apr; 73(4):830-6. PubMed ID: 3948379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of non-adrenergic inhibition of cardiac vagal action on peak frequency of sympathetic stimulation in the dog.
    Gardner TD; Potter EK
    J Physiol; 1988 Nov; 405():115-22. PubMed ID: 3255790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vagal and sympathetic effects on the pacemaker fibers in the sinus venosus of the heart.
    HUTTER OF; TRAUTWEIN W
    J Gen Physiol; 1956 May; 39(5):715-33. PubMed ID: 13319658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in vagal phasic chronotropic responses with sympathetic stimulation in the dog.
    Stuesse SL; Wallick DW; Zieske H; Levy MN
    Am J Physiol; 1981 Dec; 241(6):H850-6. PubMed ID: 7325253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluctuations of the sympathetic nerve discharges in animals without natural heartbeat.
    Yambe T; Nitta S; Naganuma S; Kakinuma Y; Izutsu K; Akiho H; Naganuma T; Kikuchi Y; Kobayashi S; Ohsawa N
    Artif Organs; 1994 Oct; 18(10):775-80. PubMed ID: 7832662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.