BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 10199406)

  • 21. Knockdown of CENH3 in Arabidopsis reduces mitotic divisions and causes sterility by disturbed meiotic chromosome segregation.
    Lermontova I; Koroleva O; Rutten T; Fuchs J; Schubert V; Moraes I; Koszegi D; Schubert I
    Plant J; 2011 Oct; 68(1):40-50. PubMed ID: 21635586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase.
    Mochizuki K; Gorovsky MA
    Genes Dev; 2005 Jan; 19(1):77-89. PubMed ID: 15598983
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Histone H3 phosphorylation is required for the initiation, but not maintenance, of mammalian chromosome condensation.
    Van Hooser A; Goodrich DW; Allis CD; Brinkley BR; Mancini MA
    J Cell Sci; 1998 Dec; 111 ( Pt 23)():3497-506. PubMed ID: 9811564
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Condensins promote chromosome individualization and segregation during mitosis, meiosis, and amitosis in
    Howard-Till R; Loidl J
    Mol Biol Cell; 2018 Feb; 29(4):466-478. PubMed ID: 29237819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitotic histone H3 phosphorylation by the NIMA kinase in Aspergillus nidulans.
    De Souza CP; Osmani AH; Wu LP; Spotts JL; Osmani SA
    Cell; 2000 Aug; 102(3):293-302. PubMed ID: 10975520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A mutational analysis of conjugation in Tetrahymena thermophila. 1. Phenotypes affecting early development: meiosis to nuclear selection.
    Cole ES; Cassidy-Hanley D; Hemish J; Tuan J; Bruns PJ
    Dev Biol; 1997 Sep; 189(2):215-32. PubMed ID: 9299115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes.
    Hsu JY; Sun ZW; Li X; Reuben M; Tatchell K; Bishop DK; Grushcow JM; Brame CJ; Caldwell JA; Hunt DF; Lin R; Smith MM; Allis CD
    Cell; 2000 Aug; 102(3):279-91. PubMed ID: 10975519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The N-terminus of histone H2B, but not that of histone H3 or its phosphorylation, is essential for chromosome condensation.
    de la Barre AE; Angelov D; Molla A; Dimitrov S
    EMBO J; 2001 Nov; 20(22):6383-93. PubMed ID: 11707409
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The chromosomal distribution of phosphorylated histone H3 differs between plants and animals at meiosis.
    Manzanero S; Arana P; Puertas MJ; Houben A
    Chromosoma; 2000; 109(5):308-17. PubMed ID: 11007489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Developmental progression of Tetrahymena through the cell cycle and conjugation.
    Cole E; Sugai T
    Methods Cell Biol; 2012; 109():177-236. PubMed ID: 22444146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deletion of the Tetrahymena thermophila rDNA replication fork barrier region disrupts macronuclear rDNA excision and creates a fragile site in the micronuclear genome.
    Yakisich JS; Kapler GM
    Nucleic Acids Res; 2006; 34(2):620-34. PubMed ID: 16449202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The temporal and spatial pattern of histone H3 phosphorylation at serine 28 and serine 10 is similar in plants but differs between mono- and polycentric chromosomes.
    Gernand D; Demidov D; Houben A
    Cytogenet Genome Res; 2003; 101(2):172-6. PubMed ID: 14610360
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteolytic processing of micronuclear H3 and histone phosphorylation during conjugation in Tetrahymena thermophila.
    Allis CD; Wiggins JC
    Exp Cell Res; 1984 Aug; 153(2):287-98. PubMed ID: 6734746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis.
    Giet R; Glover DM
    J Cell Biol; 2001 Feb; 152(4):669-82. PubMed ID: 11266459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. E2fl1 is a meiosis-specific transcription factor in the protist Tetrahymena thermophila.
    Zhang J; Tian M; Yan GX; Shodhan A; Miao W
    Cell Cycle; 2017 Jan; 16(1):123-135. PubMed ID: 27892792
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Block in anaphase chromosome separation caused by a telomerase template mutation.
    Kirk KE; Harmon BP; Reichardt IK; Sedat JW; Blackburn EH
    Science; 1997 Mar; 275(5305):1478-81. PubMed ID: 9045613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deposition and function of histone H3 variants in Tetrahymena thermophila.
    Cui B; Liu Y; Gorovsky MA
    Mol Cell Biol; 2006 Oct; 26(20):7719-30. PubMed ID: 16908532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Whole genome studies of Tetrahymena.
    Coyne RS; Stover NA; Miao W
    Methods Cell Biol; 2012; 109():53-81. PubMed ID: 22444143
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A dominant negative mutant of TLK1 causes chromosome missegregation and aneuploidy in normal breast epithelial cells.
    Sunavala-Dossabhoy G; Li Y; Williams B; De Benedetti A
    BMC Cell Biol; 2003 Oct; 4():16. PubMed ID: 14583098
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNA polymerase II localizes in Tetrahymena thermophila meiotic micronuclei when micronuclear transcription associated with genome rearrangement occurs.
    Mochizuki K; Gorovsky MA
    Eukaryot Cell; 2004 Oct; 3(5):1233-40. PubMed ID: 15470252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.