These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 10199659)

  • 1. Designed four-helix bundle catalysts--the engineering of reactive sites for hydrolysis and transesterification reactions of p-nitrophenyl esters.
    Baltzer L; Broo KS; Nilsson H; Nilsson J
    Bioorg Med Chem; 1999 Jan; 7(1):83-91. PubMed ID: 10199659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced complexity and catalytic efficiency in the hydrolysis of phosphate diesters by rationally designed helix-loop-helix motifs.
    Razkin J; Lindgren J; Nilsson H; Baltzer L
    Chembiochem; 2008 Aug; 9(12):1975-84. PubMed ID: 18600814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Setting the stage for new catalytic functions in designed proteins--exploring the imine pathway in the efficient decarboxylation of oxaloacetate by an Arg-Lys site in a four-helix bundle protein scaffold.
    Allert M; Baltzer L
    Chemistry; 2002 Jun; 8(11):2549-60. PubMed ID: 12180334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-selective control of the reactivity of surface-exposed histidine residues in designed four-helix-bundle catalysts.
    Broo KS; Brive L; Sott RS; Baltzer L
    Fold Des; 1998; 3(4):303-12. PubMed ID: 9710576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional folded polypeptides from peptide synthesis and site-selective self-functionalization--practical scaffolds in aqueous solution.
    Andersson LK; Dolphin GT; Baltzer L
    Chembiochem; 2002 Aug; 3(8):741-51. PubMed ID: 12203972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of lysine reactivity in four-helix bundle proteins by site-selective pKa depression: expanding the versatility of proteins by postsynthetic functionalization.
    Andersson LK; Caspersson M; Baltzer L
    Chemistry; 2002 Aug; 8(16):3687-97. PubMed ID: 12203296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalysis of the cleavage of uridine 3'-2,2,2-trichloroethylphosphate by a designed helix-loop-helix motif peptide.
    Razkin J; Nilsson H; Baltzer L
    J Am Chem Soc; 2007 Nov; 129(47):14752-8. PubMed ID: 17985898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleophilic and general acid catalysis at physiological pH by a designed miniature esterase.
    Nicoll AJ; Allemann RK
    Org Biomol Chem; 2004 Aug; 2(15):2175-80. PubMed ID: 15280952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncovalent binding of a reaction intermediate by a designed helix-loop-helix motif-implications for catalyst design.
    Allert M; Baltzer L
    Chembiochem; 2003 Apr; 4(4):306-18. PubMed ID: 12672110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive-site design in folded-polypeptide catalysts--the leaving group pKa of reactive esters sets the stage for cooperativity in nucleophilic and general-acid catalysis.
    Nilsson J; Baltzer L
    Chemistry; 2000 Jun; 6(12):2214-20. PubMed ID: 10926228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo metallonucleases based on helix-loop-helix motifs.
    Rossi P; Tecilla P; Baltzer L; Scrimin P
    Chemistry; 2004 Sep; 10(17):4163-70. PubMed ID: 15352099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pH-dependent tertiary structure of a designed helix-loop-helix dimer.
    Dolphin GT; Baltzer L
    Fold Des; 1997; 2(5):319-30. PubMed ID: 9377715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined enzyme and substrate design: grafting of a cooperative two-histidine catalytic motif into a protein targeted at the scissile bond in a designed ester substrate.
    Höst GE; Razkin J; Baltzer L; Jonsson BH
    Chembiochem; 2007 Sep; 8(13):1570-6. PubMed ID: 17665409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structure/activity study of calcium affinity and selectivity using a synthetic peptide model of the helix-loop-helix calcium-binding motif.
    Procyshyn RM; Reid RE
    J Biol Chem; 1994 Jan; 269(3):1641-7. PubMed ID: 8294410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.
    Meuzelaar H; Vreede J; Woutersen S
    Biophys J; 2016 Jun; 110(11):2328-2341. PubMed ID: 27276251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures and mechanisms of Nudix hydrolases.
    Mildvan AS; Xia Z; Azurmendi HF; Saraswat V; Legler PM; Massiah MA; Gabelli SB; Bianchet MA; Kang LW; Amzel LM
    Arch Biochem Biophys; 2005 Jan; 433(1):129-43. PubMed ID: 15581572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational, kinetic, and NMR studies of the mechanism of E. coli GDP-mannose mannosyl hydrolase, an unusual Nudix enzyme.
    Legler PM; Massiah MA; Mildvan AS
    Biochemistry; 2002 Sep; 41(35):10834-48. PubMed ID: 12196023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and high-resolution structure of a β³-peptide bundle catalyst.
    Wang PS; Nguyen JB; Schepartz A
    J Am Chem Soc; 2014 May; 136(19):6810-3. PubMed ID: 24802883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of secondary interactions on the kinetics of peptide and peptide ester hydrolysis by tissue kallikrein and trypsin.
    Fiedler F
    Eur J Biochem; 1987 Mar; 163(2):303-12. PubMed ID: 3643848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.