BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10200153)

  • 41. Reduction of nilutamide by NO synthases: implications for the adverse effects of this nitroaromatic antiandrogen drug.
    Ask K; Dijols S; Giroud C; Casse L; Frapart YM; Sari MA; Kim KS; Stuehr DJ; Mansuy D; Camus P; Boucher JL
    Chem Res Toxicol; 2003 Dec; 16(12):1547-54. PubMed ID: 14680368
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Low-temperature optical absorption spectra suggest a redox role for tetrahydrobiopterin in both steps of nitric oxide synthase catalysis.
    Gorren AC; Bec N; Schrammel A; Werner ER; Lange R; Mayer B
    Biochemistry; 2000 Sep; 39(38):11763-70. PubMed ID: 10995244
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A conserved tryptophan 457 modulates the kinetics and extent of N-hydroxy-L-arginine oxidation by inducible nitric-oxide synthase.
    Wang ZQ; Wei CC; Stuehr DJ
    J Biol Chem; 2002 Apr; 277(15):12830-7. PubMed ID: 11823464
    [TBL] [Abstract][Full Text] [Related]  

  • 44. KLYP956 is a non-imidazole-based orally active inhibitor of nitric-oxide synthase dimerization.
    Symons KT; Massari ME; Nguyen PM; Lee TT; Roppe J; Bonnefous C; Payne JE; Smith ND; Noble SA; Sablad M; Rozenkrants N; Zhang Y; Rao TS; Shiau AK; Hassig CA
    Mol Pharmacol; 2009 Jul; 76(1):153-62. PubMed ID: 19364813
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Site and mechanism of uncoupling of nitric-oxide synthase: Uncoupling by monomerization and other misconceptions.
    Gebhart V; Reiß K; Kollau A; Mayer B; Gorren ACF
    Nitric Oxide; 2019 Aug; 89():14-21. PubMed ID: 31022534
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Autoxidation rates of neuronal nitric oxide synthase: effects of the substrates, inhibitors, and modulators.
    Sato H; Sagami I; Daff S; Shimizu T
    Biochem Biophys Res Commun; 1998 Dec; 253(3):845-9. PubMed ID: 9918817
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A tetrahydrobiopterin radical forms and then becomes reduced during Nomega-hydroxyarginine oxidation by nitric-oxide synthase.
    Wei CC; Wang ZQ; Hemann C; Hille R; Stuehr DJ
    J Biol Chem; 2003 Nov; 278(47):46668-73. PubMed ID: 14504282
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microsomal formation of nitric oxide and cyanamides from non-physiological N-hydroxyguanidines: N-hydroxydebrisoquine as a model substrate.
    Clement B; Boucher JL; Mansuy D; Harsdorf A
    Biochem Pharmacol; 1999 Aug; 58(3):439-45. PubMed ID: 10424762
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differential effects of mutations in human endothelial nitric oxide synthase at residues Tyr-357 and Arg-365 on L-arginine hydroxylation and GN-hydroxy-L-arginine oxidation.
    Chen PF; Berka V; Wu KK
    Arch Biochem Biophys; 2003 Mar; 411(1):83-92. PubMed ID: 12590926
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative computational analysis of active and inactive cofactors of nitric oxide synthase.
    Menyhárd DK
    J Phys Chem B; 2009 Mar; 113(10):3151-9. PubMed ID: 19708267
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel cryo-reduction method to investigate the molecular mechanism of nitric oxide synthases.
    Bernad S; Brunel A; Dorlet P; Sicard-Roselli C; Santolini J
    J Phys Chem B; 2012 May; 116(19):5595-603. PubMed ID: 22530945
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of tetrahydrobiopterin in the activation of oxygen by nitric-oxide synthase.
    Bec N; Gorren AFC ; Mayer B; Schmidt PP; Andersson KK; Lange R
    J Inorg Biochem; 2000 Aug; 81(3):207-11. PubMed ID: 11051565
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reduction of N(ω)-hydroxy-L-arginine by the mitochondrial amidoxime reducing component (mARC).
    Kotthaus J; Wahl B; Havemeyer A; Kotthaus J; Schade D; Garbe-Schönberg D; Mendel R; Bittner F; Clement B
    Biochem J; 2011 Jan; 433(2):383-91. PubMed ID: 21029045
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nitrogen oxides and hydroxyguanidines: formation of donors of nitric and nitrous oxides and possible relevance to nitrous oxide formation by nitric oxide synthase.
    Southan GJ; Srinivasan A
    Nitric Oxide; 1998; 2(4):270-86. PubMed ID: 9851368
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electron paramagnetic resonance characterization of tetrahydrobiopterin radical formation in bacterial nitric oxide synthase compared to mammalian nitric oxide synthase.
    Brunel A; Santolini J; Dorlet P
    Biophys J; 2012 Jul; 103(1):109-17. PubMed ID: 22828337
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The novel binding mode of N-alkyl-N'-hydroxyguanidine to neuronal nitric oxide synthase provides mechanistic insights into NO biosynthesis.
    Li H; Shimizu H; Flinspach M; Jamal J; Yang W; Xian M; Cai T; Wen EZ; Jia Q; Wang PG; Poulos TL
    Biochemistry; 2002 Nov; 41(47):13868-75. PubMed ID: 12437343
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrochemical and peroxidase oxidation study of N'-hydroxyguanidine derivatives as NO donors.
    Cai T; Xian M; Wang PG
    Bioorg Med Chem Lett; 2002 Jun; 12(11):1507-10. PubMed ID: 12031330
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A nitric oxide synthase-like protein from
    Picciano AL; Crane BR
    J Biol Chem; 2019 Jul; 294(27):10708-10719. PubMed ID: 31113865
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Why do nitric oxide synthases use tetrahydrobiopterin?
    Wei CC; Wang ZQ; Meade AL; McDonald JF; Stuehr DJ
    J Inorg Biochem; 2002 Sep; 91(4):618-24. PubMed ID: 12237227
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multiple catalytic functions of brain nitric oxide synthase. Biochemical characterization, cofactor-requirement, and the role of N omega-hydroxy-L-arginine as an intermediate.
    Klatt P; Schmidt K; Uray G; Mayer B
    J Biol Chem; 1993 Jul; 268(20):14781-7. PubMed ID: 7686905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.