These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 10200154)

  • 61. Superoxide dismutase folding/unfolding pathway: role of the metal ions in modulating structural and dynamical features.
    Assfalg M; Banci L; Bertini I; Turano P; Vasos PR
    J Mol Biol; 2003 Jun; 330(1):145-58. PubMed ID: 12818209
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Identification of slow motions in the reduced recombinant high-potential iron sulfur protein I (HiPIP I) from Ectothiorhodospira halophila via 15N rotating-frame NMR relaxation measurements.
    Banci L; Felli IC; Koulougliotis D
    J Biomol NMR; 1998 Aug; 12(2):307-18. PubMed ID: 9752001
    [TBL] [Abstract][Full Text] [Related]  

  • 63.
    Trindade IB; Invernici M; Cantini F; Louro RO; Piccioli M
    Biomol NMR Assign; 2020 Oct; 14(2):211-215. PubMed ID: 32415427
    [TBL] [Abstract][Full Text] [Related]  

  • 64. 1H NMR studies of oxidized high-potential iron protein from Chromatium vinosum. Nuclear Overhauser effect measurements.
    Cowan JA; Sola M
    Biochemistry; 1990 Jun; 29(23):5633-7. PubMed ID: 2386791
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Model-free analysis of a thermophilic Fe(7)S(8) protein compared with a mesophilic Fe(4)S(4) protein.
    Bertini I; Luchinat C; Niikura Y; Presenti C
    Proteins; 2000 Oct; 41(1):75-85. PubMed ID: 10944395
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Experimental evidence for the role of buried polar groups in determining the reduction potential of metalloproteins: the S79P variant of Chromatium vinosum HiPIP.
    Babini E; Borsari M; Capozzi F; Eltis LD; Luchinat C
    J Biol Inorg Chem; 1999 Dec; 4(6):692-700. PubMed ID: 10631600
    [TBL] [Abstract][Full Text] [Related]  

  • 67. High-dimensional NMR spectra for structural studies of biomolecules.
    Kazimierczuk K; Stanek J; Zawadzka-Kazimierczuk A; Koźmiński W
    Chemphyschem; 2013 Sep; 14(13):3015-25. PubMed ID: 23794393
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Insights into the mechanistic role of the [Fe4S4] cubane in the A-cluster {[Fe4S4]-(SR)-[NipNid]} of acetyl-coenzyme A synthase.
    Liu Y; Wang F; Li P; Tan X
    Chembiochem; 2011 Jun; 12(9):1417-21. PubMed ID: 21626638
    [No Abstract]   [Full Text] [Related]  

  • 69. Paramagnetic Properties of a Crystalline Iron-Sulfur Protein by Magic-Angle Spinning NMR Spectroscopy.
    Bertarello A; Schubeis T; Fuccio C; Ravera E; Fragai M; Parigi G; Emsley L; Pintacuda G; Luchinat C
    Inorg Chem; 2017 Jun; 56(11):6624-6629. PubMed ID: 28537393
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Assessment of protein solution versus crystal structure determination using spin-diffusion-suppressed NOE and heteronuclear relaxation data.
    LeMaster DM
    J Biomol NMR; 1997 Jan; 9(1):79-93. PubMed ID: 9081545
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Redox-related chemical shift perturbations on backbone nuclei of high-potential iron-sulfur proteins.
    Lehmann T; Luchinat C; Piccioli M
    Inorg Chem; 2002 Mar; 41(6):1679-83. PubMed ID: 11896740
    [No Abstract]   [Full Text] [Related]  

  • 72. SAMPLEX: automatic mapping of perturbed and unperturbed regions of proteins and complexes.
    Krzeminski M; Loth K; Boelens R; Bonvin AM
    BMC Bioinformatics; 2010 Jan; 11():51. PubMed ID: 20102599
    [TBL] [Abstract][Full Text] [Related]  

  • 73. 1H and (13)C NMR Studies of an Oxidized HiPIP.
    Bertini I; Donaire A; Felli IC; Luchinat C; Rosato A
    Inorg Chem; 1997 Oct; 36(21):4798-4803. PubMed ID: 11670159
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Differential geometry of proteins: a structural and dynamical representation of patterns.
    Louie AH; Somorjai RL
    J Theor Biol; 1982 Sep; 98(2):189-209. PubMed ID: 7176671
    [No Abstract]   [Full Text] [Related]  

  • 75. The NMR contribution to protein-protein networking in Fe-S protein maturation.
    Banci L; Camponeschi F; Ciofi-Baffoni S; Piccioli M
    J Biol Inorg Chem; 2018 Jun; 23(4):665-685. PubMed ID: 29569085
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The Relationship between Environmental Dioxygen and Iron-Sulfur Proteins Explored at the Genome Level.
    Andreini C; Rosato A; Banci L
    PLoS One; 2017; 12(1):e0171279. PubMed ID: 28135316
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers.
    Liu J; Chakraborty S; Hosseinzadeh P; Yu Y; Tian S; Petrik I; Bhagi A; Lu Y
    Chem Rev; 2014 Apr; 114(8):4366-469. PubMed ID: 24758379
    [No Abstract]   [Full Text] [Related]  

  • 78. Dynamics of protein folding and cofactor binding monitored by single-molecule force spectroscopy.
    Cao Y; Li H
    Biophys J; 2011 Oct; 101(8):2009-17. PubMed ID: 22004755
    [TBL] [Abstract][Full Text] [Related]  

  • 79. NMR chemical shift and relaxation measurements provide evidence for the coupled folding and binding of the p53 transactivation domain.
    Vise PD; Baral B; Latos AJ; Daughdrill GW
    Nucleic Acids Res; 2005; 33(7):2061-77. PubMed ID: 15824059
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Studies on the degradation pathway of iron-sulfur centers during unfolding of a hyperstable ferredoxin: cluster dissociation, iron release and protein stability.
    Leal SS; Teixeira M; Gomes CM
    J Biol Inorg Chem; 2004 Dec; 9(8):987-96. PubMed ID: 15578277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.