These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 10200166)
1. Identifying groups involved in the binding of prephenate to prephenate dehydrogenase from Escherichia coli. Christendat D; Turnbull JL Biochemistry; 1999 Apr; 38(15):4782-93. PubMed ID: 10200166 [TBL] [Abstract][Full Text] [Related]
2. Use of site-directed mutagenesis to identify residues specific for each reaction catalyzed by chorismate mutase-prephenate dehydrogenase from Escherichia coli. Christendat D; Saridakis VC; Turnbull JL Biochemistry; 1998 Nov; 37(45):15703-12. PubMed ID: 9843375 [TBL] [Abstract][Full Text] [Related]
4. Identification of active site residues of chorismate mutase-prephenate dehydrogenase from Escherichia coli. Christendat D; Turnbull J Biochemistry; 1996 Apr; 35(14):4468-79. PubMed ID: 8605196 [TBL] [Abstract][Full Text] [Related]
5. Implication by site-directed mutagenesis of Arg314 and Tyr316 in the coenzyme site of pig mitochondrial NADP-dependent isocitrate dehydrogenase. Lee P; Colman RF Arch Biochem Biophys; 2002 May; 401(1):81-90. PubMed ID: 12054490 [TBL] [Abstract][Full Text] [Related]
6. Feedback inhibition of chorismate mutase/prephenate dehydrogenase (TyrA) of Escherichia coli: generation and characterization of tyrosine-insensitive mutants. Lütke-Eversloh T; Stephanopoulos G Appl Environ Microbiol; 2005 Nov; 71(11):7224-8. PubMed ID: 16269762 [TBL] [Abstract][Full Text] [Related]
7. pH dependency of the reactions catalyzed by chorismate mutase-prephenate dehydrogenase from Escherichia coli. Turnbull J; Cleland WW; Morrison JF Biochemistry; 1991 Aug; 30(31):7777-82. PubMed ID: 1868055 [TBL] [Abstract][Full Text] [Related]
8. Probing the catalytic mechanism of prephenate dehydratase by site-directed mutagenesis of the Escherichia coli P-protein dehydratase domain. Zhang S; Wilson DB; Ganem B Biochemistry; 2000 Apr; 39(16):4722-8. PubMed ID: 10769128 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamics of a transition state analogue inhibitor binding to Escherichia coli chorismate mutase: probing the charge state of an active site residue and its role in inhibitor binding and catalysis. Lee AY; Zhang S; Kongsaeree P; Clardy J; Ganem B; Erickson JW; Xie D Biochemistry; 1998 Jun; 37(25):9052-7. PubMed ID: 9636050 [TBL] [Abstract][Full Text] [Related]
10. Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis. Lassila JK; Keeffe JR; Kast P; Mayo SL Biochemistry; 2007 Jun; 46(23):6883-91. PubMed ID: 17506527 [TBL] [Abstract][Full Text] [Related]
11. The mechanism of catalysis of the chorismate to prephenate reaction by the Escherichia coli mutase enzyme. Hur S; Bruice TC Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1176-81. PubMed ID: 11818529 [TBL] [Abstract][Full Text] [Related]
13. Probing pH-dependent functional elements in proteins: modification of carboxylic acid pairs in Trichoderma reesei cellobiohydrolase Cel6A. Wohlfahrt G; Pellikka T; Boer H; Teeri TT; Koivula A Biochemistry; 2003 Sep; 42(34):10095-103. PubMed ID: 12939137 [TBL] [Abstract][Full Text] [Related]
14. Bacteriophage T7 RNA polymerase and its active-site mutants. Kinetic, spectroscopic and calorimetric characterization. Osumi-Davis PA; Sreerama N; Volkin DB; Middaugh CR; Woody RW; Woody AY J Mol Biol; 1994 Mar; 237(1):5-19. PubMed ID: 8133519 [TBL] [Abstract][Full Text] [Related]
15. Comparison of formation of reactive conformers (NACs) for the Claisen rearrangement of chorismate to prephenate in water and in the E. coli mutase: the efficiency of the enzyme catalysis. Hur S; Bruice TC J Am Chem Soc; 2003 May; 125(19):5964-72. PubMed ID: 12733937 [TBL] [Abstract][Full Text] [Related]
16. Chorismate mutase-prephenate dehydrogenase from Escherichia coli. 2. Evidence for two different active sites. Turnbull J; Morrison JF Biochemistry; 1990 Nov; 29(44):10255-61. PubMed ID: 2271653 [TBL] [Abstract][Full Text] [Related]
17. Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: identification and mutational analysis of the active site residues. Jiang M; Chen X; Wu XH; Chen M; Wu YD; Guo Z Biochemistry; 2009 Jul; 48(29):6921-31. PubMed ID: 19545176 [TBL] [Abstract][Full Text] [Related]
18. Mapping of chorismate mutase and prephenate dehydrogenase domains in the Escherichia coli T-protein. Chen S; Vincent S; Wilson DB; Ganem B Eur J Biochem; 2003 Feb; 270(4):757-63. PubMed ID: 12581215 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamics of ligand binding and denaturation for His64 mutants of tissue plasminogen activator kringle-2 domain. Kelley RF; DeVos AM; Cleary S Proteins; 1991; 11(1):35-44. PubMed ID: 1961700 [TBL] [Abstract][Full Text] [Related]
20. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme. Karsten WE; Liu D; Rao GS; Harris BG; Cook PF Biochemistry; 2005 Mar; 44(9):3626-35. PubMed ID: 15736972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]