These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 10200220)

  • 1. Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint.
    Hess D; Büschges A
    J Neurophysiol; 1999 Apr; 81(4):1856-65. PubMed ID: 10200220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensorimotor pathways involved in interjoint reflex action of an insect leg.
    Hess D; Büschges A
    J Neurobiol; 1997 Dec; 33(7):891-913. PubMed ID: 9407012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint.
    Akay T; Bässler U; Gerharz P; Büschges A
    J Neurophysiol; 2001 Feb; 85(2):594-604. PubMed ID: 11160496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interjoint coordination in the stick insect leg-control system: the role of positional signaling.
    Bucher D; Akay T; DiCaprio RA; Buschges A
    J Neurophysiol; 2003 Mar; 89(3):1245-55. PubMed ID: 12626610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibration signals from the FT joint can induce phase transitions in both directions in motoneuron pools of the stick insect walking system.
    Bässler U; Sauer AE; Büschges A
    J Neurobiol; 2003 Aug; 56(2):125-38. PubMed ID: 12838578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intersegmental transfer of sensory signals in the stick insect leg muscle control system.
    Stein W; Büschges A; Bässler U
    J Neurobiol; 2006 Sep; 66(11):1253-69. PubMed ID: 16902990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of local nonspiking interneurons in the generation of rhythmic motor activity in the stick insect.
    Büschges A
    J Neurobiol; 1995 Aug; 27(4):488-512. PubMed ID: 7561829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory synaptic drive patterns motoneuronal activity in rhythmic preparations of isolated thoracic ganglia in the stick insect.
    Büschges A
    Brain Res; 1998 Feb; 783(2):262-71. PubMed ID: 9507159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg.
    Akay T; Haehn S; Schmitz J; Büschges A
    J Neurophysiol; 2004 Jul; 92(1):42-51. PubMed ID: 14999042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intersegmental coordination of walking movements in stick insects.
    Ludwar BCh; Göritz ML; Schmidt J
    J Neurophysiol; 2005 Mar; 93(3):1255-65. PubMed ID: 15525808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity-dependent sensitivity of proprioceptive sensory neurons in the stick insect femoral chordotonal organ.
    DiCaprio RA; Wolf H; Büschges A
    J Neurophysiol; 2002 Nov; 88(5):2387-98. PubMed ID: 12424280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects.
    Akay T; Büschges A
    J Neurophysiol; 2006 Dec; 96(6):3532-7. PubMed ID: 16956989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative mechanisms between leg joints of Carausius morosus I. Nonspiking interneurons that contribute to interjoint coordination.
    Brunn DE
    J Neurophysiol; 1998 Jun; 79(6):2964-76. PubMed ID: 9636100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Premotor interneurons in the local control of stepping motor output for the stick insect single middle leg.
    von Uckermann G; Büschges A
    J Neurophysiol; 2009 Sep; 102(3):1956-75. PubMed ID: 19605613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of presynaptic inputs to proprioceptive afferents in tuning sensorimotor pathways of an insect joint control network.
    Sauer AE; Büschges A; Stein W
    J Neurobiol; 1997 Apr; 32(4):359-76. PubMed ID: 9087889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonspiking local interneurons in insect leg motor control. I. Common layout and species-specific response properties of femur-tibia joint control pathways in stick insect and locust.
    Büschges A; Wolf H
    J Neurophysiol; 1995 May; 73(5):1843-60. PubMed ID: 7623085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A central pattern-generating network contributes to "reflex-reversal"-like leg motoneuron activity in the locust.
    Knop G; Denzer L; Büschges A
    J Neurophysiol; 2001 Dec; 86(6):3065-8. PubMed ID: 11731562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Body side-specific changes in sensorimotor processing of movement feedback in a walking insect.
    Schmitz J; Gruhn M; Büschges A
    J Neurophysiol; 2019 Nov; 122(5):2173-2186. PubMed ID: 31553676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system.
    Büschges A; Ludwar BCh; Bucher D; Schmidt J; DiCaprio RA
    Eur J Neurosci; 2004 Apr; 19(7):1856-62. PubMed ID: 15078559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Octopamine effects mimick state-dependent changes in a proprioceptive feedback system.
    Büschges A; Kittmann R; Ramirez JM
    J Neurobiol; 1993 May; 24(5):598-610. PubMed ID: 8326300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.