These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 10200220)
21. Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine. BÜSchges A; Schmitz J; BÄSsler U J Exp Biol; 1995; 198(Pt 2):435-56. PubMed ID: 9318078 [TBL] [Abstract][Full Text] [Related]
22. THE PHYSIOLOGY OF SENSORY CELLS IN THE VENTRAL SCOLOPARIUM OF THE STICK INSECT FEMORAL CHORDOTONAL ORGAN. BUSchges A J Exp Biol; 1994 Apr; 189(1):285-92. PubMed ID: 9317814 [TBL] [Abstract][Full Text] [Related]
23. Thoracic leg motoneurons in the isolated CNS of adult Manduca produce patterned activity in response to pilocarpine, which is distinct from that produced in larvae. Johnston RM; Levine RB Invert Neurosci; 2002 Oct; 4(4):175-92. PubMed ID: 12488968 [TBL] [Abstract][Full Text] [Related]
24. Distributed processing of load and movement feedback in the premotor network controlling an insect leg joint. Gebehart C; Schmidt J; Büschges A J Neurophysiol; 2021 May; 125(5):1800-1813. PubMed ID: 33788591 [TBL] [Abstract][Full Text] [Related]
25. Non-linear multimodal integration in a distributed premotor network controls proprioceptive reflex gain in the insect leg. Gebehart C; Hooper SL; Büschges A Curr Biol; 2022 Sep; 32(17):3847-3854.e3. PubMed ID: 35896118 [TBL] [Abstract][Full Text] [Related]
26. Distributed processing on the basis of parallel and antagonistic pathways simulation of the femur-tibia control system in the stick insect. Sauer AE; Driesang RB; Büschges A; Bässler U J Comput Neurosci; 1996 Sep; 3(3):179-98. PubMed ID: 8872700 [TBL] [Abstract][Full Text] [Related]
27. Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system. Akay T; Ludwar BCh; Göritz ML; Schmitz J; Büschges A J Neurosci; 2007 Mar; 27(12):3285-94. PubMed ID: 17376989 [TBL] [Abstract][Full Text] [Related]
28. Intra- and intersegmental influences among central pattern generating networks in the walking system of the stick insect. Mantziaris C; Bockemühl T; Holmes P; Borgmann A; Daun S; Büschges A J Neurophysiol; 2017 Oct; 118(4):2296-2310. PubMed ID: 28724783 [TBL] [Abstract][Full Text] [Related]
29. Remodeling of the femoral chordotonal organ during metamorphosis of the hawkmoth, Manduca sexta. Consoulas C; Rose U; Levine RB J Comp Neurol; 2000 Oct; 426(3):391-405. PubMed ID: 10992245 [TBL] [Abstract][Full Text] [Related]
30. Rhythmic patterns evoked in locust leg motor neurons by the muscarinic agonist pilocarpine. Ryckebusch S; Laurent G J Neurophysiol; 1993 May; 69(5):1583-95. PubMed ID: 8389831 [TBL] [Abstract][Full Text] [Related]
31. Central generation of grooming motor patterns and interlimb coordination in locusts. Berkowitz A; Laurent G J Neurosci; 1996 Dec; 16(24):8079-91. PubMed ID: 8987833 [TBL] [Abstract][Full Text] [Related]
32. Temporal differences between load and movement signal integration in the sensorimotor network of an insect leg. Gebehart C; Büschges A J Neurophysiol; 2021 Dec; 126(6):1875-1890. PubMed ID: 34705575 [TBL] [Abstract][Full Text] [Related]
33. Intersegmental and local interneurons in the metathorax of the stick insect Carausius morosus that monitor middle leg position. Brunn DE; Dean J J Neurophysiol; 1994 Sep; 72(3):1208-19. PubMed ID: 7807205 [TBL] [Abstract][Full Text] [Related]
34. Existence of a Long-Range Caudo-Rostral Sensory Influence in Terrestrial Locomotion. Grabowska M; Toth TI; Büschges A; Daun S J Neurosci; 2022 Jun; 42(24):4841-4851. PubMed ID: 35545434 [TBL] [Abstract][Full Text] [Related]
35. The synaptic drive of central pattern-generating networks to leg motor neurons of a walking insect is motor neuron pool specific. Ruthe A; Mantziaris C; Büschges A Curr Biol; 2024 Feb; 34(4):910-915.e2. PubMed ID: 38307023 [TBL] [Abstract][Full Text] [Related]
36. Subsets of leg proprioceptors influence leg kinematics but not interleg coordination in Drosophila melanogaster walking. Chockley AS; Dinges GF; Di Cristina G; Ratican S; Bockemühl T; Büschges A J Exp Biol; 2022 Oct; 225(20):. PubMed ID: 36268799 [TBL] [Abstract][Full Text] [Related]
37. Pattern generation for walking and searching movements of a stick insect leg. I. Coordination of motor activity. Fischer H; Schmidt J; Haas R; Büschges A J Neurophysiol; 2001 Jan; 85(1):341-53. PubMed ID: 11152734 [TBL] [Abstract][Full Text] [Related]
38. Cooperative mechanisms between leg joints of Carausius morosus II. Motor neuron activity and influence of conditional bursting interneuron. Brunn DE; Heuer A J Neurophysiol; 1998 Jun; 79(6):2977-85. PubMed ID: 9636101 [TBL] [Abstract][Full Text] [Related]
39. Adaptive control for insect leg position: controller properties depend on substrate compliance. Cruse H; Kühn S; Park S; Schmitz J J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Dec; 190(12):983-91. PubMed ID: 15378330 [TBL] [Abstract][Full Text] [Related]
40. Central drive and proprioceptive control of antennal movements in the walking stick insect. Krause AF; Winkler A; Dürr V J Physiol Paris; 2013; 107(1-2):116-29. PubMed ID: 22728470 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]